A Cu-Cu Bonding Method Using Preoxidized Cu Microparticles under Formic Acid Atmosphere

Runhua Gao, Jiahui Li, Yu-An Shen, H. Nishikawa
{"title":"A Cu-Cu Bonding Method Using Preoxidized Cu Microparticles under Formic Acid Atmosphere","authors":"Runhua Gao, Jiahui Li, Yu-An Shen, H. Nishikawa","doi":"10.23919/ICEP.2019.8733490","DOIUrl":null,"url":null,"abstract":"Many power semiconductor devices now require high tolerance of current density and reliability at high temperature, therefore Cu-Cu bonding using an insert material has raised the level of concerns for its great thermal stability and conductivity. In this study, a low-pressure bonding process was developed to achieve a Cu-Cu bonding using preoxidized Cu microparticles under formic acid atmosphere. The Cu microparticles were preoxidized to generate oxide films and Cu oxide nanostructures, which were then reduced and bonded at 300 °C under formic acid atmosphere to achieve a Cu-Cu bonding. Shear strength of the Cu-Cu bondings were tested to optimize the parameters of bonding process. Fracture surfaces of the Cu-Cu bonding, as well as cross-sectional microstructures, were observed by scanning electrical microscope (SEM) and components were identified by X-ray diffraction (XRD) to investigate the bonding mechanism. The findings reveal that the oxide films and the nanostructures play key roles in this reduction bonding process, which is a promising method to obtain a Cu-Cu bonding satisfying the requirements of power device packaging.","PeriodicalId":213025,"journal":{"name":"2019 International Conference on Electronics Packaging (ICEP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICEP.2019.8733490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Many power semiconductor devices now require high tolerance of current density and reliability at high temperature, therefore Cu-Cu bonding using an insert material has raised the level of concerns for its great thermal stability and conductivity. In this study, a low-pressure bonding process was developed to achieve a Cu-Cu bonding using preoxidized Cu microparticles under formic acid atmosphere. The Cu microparticles were preoxidized to generate oxide films and Cu oxide nanostructures, which were then reduced and bonded at 300 °C under formic acid atmosphere to achieve a Cu-Cu bonding. Shear strength of the Cu-Cu bondings were tested to optimize the parameters of bonding process. Fracture surfaces of the Cu-Cu bonding, as well as cross-sectional microstructures, were observed by scanning electrical microscope (SEM) and components were identified by X-ray diffraction (XRD) to investigate the bonding mechanism. The findings reveal that the oxide films and the nanostructures play key roles in this reduction bonding process, which is a promising method to obtain a Cu-Cu bonding satisfying the requirements of power device packaging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲酸气氛下预氧化Cu微粒的Cu-Cu键合方法
许多功率半导体器件现在需要高电流密度耐受性和高温下的可靠性,因此使用插入材料的Cu-Cu键合因其出色的热稳定性和导电性而引起了人们的关注。本研究开发了一种低压键合工艺,在甲酸气氛下利用预氧化的Cu微粒实现Cu-Cu键合。将Cu微粒子预氧化生成氧化膜和氧化Cu纳米结构,然后在甲酸气氛下在300°C下还原键合,实现Cu-Cu键合。测试了Cu-Cu键合的剪切强度,优化了键合工艺参数。采用扫描电镜(SEM)和x射线衍射(XRD)分别观察了Cu-Cu键合的断裂面和断面显微结构,并对其成分进行了鉴定,探讨了键合机理。研究结果表明,氧化膜和纳米结构在还原键合过程中起着关键作用,这是获得满足功率器件封装要求的Cu-Cu键合的一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From Package to System Thermal Characterization and Design of High Power 2.5-D IC Warpage and Simulation Analysis of Panel Level FO-WLCSP Using Equivalent CTE Room-temperature printing of CNTs-based flexible TFTs with high performance Optimization of Ag-Ag Direct Bonding for Wafer-Level Power Electronics Packaging via Design of Experiments A novel TLP bonding based on sub-micron Ga particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1