Finite difference schemes for k ⋅ p models: A comparative study

Jun Z. Huang, Kuang-Chung Wang, W. Frensley, Gerhard Klimeck
{"title":"Finite difference schemes for k ⋅ p models: A comparative study","authors":"Jun Z. Huang, Kuang-Chung Wang, W. Frensley, Gerhard Klimeck","doi":"10.1109/IWCE.2015.7301965","DOIUrl":null,"url":null,"abstract":"Multi-band k · p models discretized with finite difference method (FDM) have been widely used to study electronic properties of semiconductor nanostructures. However, different schemes of FDM exist in the literature, some of them are numerically unstable leading to spurious states [1][2], while others are stable but require special treatment of the boundary conditions and/or the material interfaces [3][4][5][6]. Therefore, a comparison of their numerical behaviors (and implementation tricks) will be very helpful for selecting a suitable scheme and obtaining reliable results. To this end, we have implemented into NEMO5 simulation software [7] the following options, (a) centered difference for symmetrized (SYM) Hamiltonian [1], (b) centered difference for Burt-Foreman (BF) Hamiltonian [8], (c) one-sided differences for SYM Hamiltonian [3], and (d) one-sided differences for BF Hamiltonian [6]. For all cases, eight-band and six-band models for both zincblende and wurtzite type materials are available.","PeriodicalId":165023,"journal":{"name":"2015 International Workshop on Computational Electronics (IWCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2015.7301965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multi-band k · p models discretized with finite difference method (FDM) have been widely used to study electronic properties of semiconductor nanostructures. However, different schemes of FDM exist in the literature, some of them are numerically unstable leading to spurious states [1][2], while others are stable but require special treatment of the boundary conditions and/or the material interfaces [3][4][5][6]. Therefore, a comparison of their numerical behaviors (and implementation tricks) will be very helpful for selecting a suitable scheme and obtaining reliable results. To this end, we have implemented into NEMO5 simulation software [7] the following options, (a) centered difference for symmetrized (SYM) Hamiltonian [1], (b) centered difference for Burt-Foreman (BF) Hamiltonian [8], (c) one-sided differences for SYM Hamiltonian [3], and (d) one-sided differences for BF Hamiltonian [6]. For all cases, eight-band and six-band models for both zincblende and wurtzite type materials are available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
k⋅p模型有限差分格式的比较研究
用有限差分法离散化多波段k·p模型已广泛应用于半导体纳米结构的电子特性研究。然而,文献中存在不同的FDM方案,其中一些方案在数值上不稳定,导致伪态[1][2],而另一些方案是稳定的,但需要对边界条件和/或材料界面进行特殊处理[3][4][5][6]。因此,比较它们的数值行为(和实现技巧)将有助于选择合适的方案并获得可靠的结果。为此,我们在NEMO5仿真软件[7]中实现了以下选项,(a)对称(SYM)哈密顿量的中心差分[1],(b) Burt-Foreman (BF)哈密顿量的中心差分[8],(c) SYM哈密顿量的单侧差分[3],(d) BF哈密顿量的单侧差分[6]。对于所有的情况,八波段和六波段型号的锌闪锌矿和纤锌矿类型的材料都是可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermionic escape in quantum well solar cell GaN/InGaN/GaN disk-in-wire light emitters: polar vs. nonpolar orientations Mode space tight binding model for ultra-fast simulations of III-V nanowire MOSFETs and heterojunction TFETs Multi-scale modeling of metal-CNT interfaces I-V curves for cylinders embedded in P3HT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1