A. Afzalian, J. Huang, H. Ilatikhameneh, J. Charles, D. Lemus, J. Lopez, S. Perez Rubiano, T. Kubis, M. Povolotskyi, Gerhard Klimeck, M. Passlack, Y. Yeo
{"title":"Mode space tight binding model for ultra-fast simulations of III-V nanowire MOSFETs and heterojunction TFETs","authors":"A. Afzalian, J. Huang, H. Ilatikhameneh, J. Charles, D. Lemus, J. Lopez, S. Perez Rubiano, T. Kubis, M. Povolotskyi, Gerhard Klimeck, M. Passlack, Y. Yeo","doi":"10.1109/IWCE.2015.7301934","DOIUrl":null,"url":null,"abstract":"We explore here the suitability of a mode space tight binding algorithm to various III-V homo- and heterojunction nanowire devices. We show that in III-V materials, the number of unphysical modes to eliminate is very high compared to the Si case previously reported in the literature. Nevertheless, we demonstrate here the possibility to clean III-V mode space basis from the unphysical modes and achieve a significant speed up ratio (>150×), while keeping a very good accuracy (relative error lower than 1%) when using the algorithm for NEGF transport studies. Such results demonstrate the potential of mode space tight binding models and offer unprecedented possibilities for the full band simulation of nanostructures.","PeriodicalId":165023,"journal":{"name":"2015 International Workshop on Computational Electronics (IWCE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2015.7301934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We explore here the suitability of a mode space tight binding algorithm to various III-V homo- and heterojunction nanowire devices. We show that in III-V materials, the number of unphysical modes to eliminate is very high compared to the Si case previously reported in the literature. Nevertheless, we demonstrate here the possibility to clean III-V mode space basis from the unphysical modes and achieve a significant speed up ratio (>150×), while keeping a very good accuracy (relative error lower than 1%) when using the algorithm for NEGF transport studies. Such results demonstrate the potential of mode space tight binding models and offer unprecedented possibilities for the full band simulation of nanostructures.