A new multi-channel on-chip-bus architecture for system-on-chips

Sanghun Lee, Chanho Lee, Hyuk-Jae Lee
{"title":"A new multi-channel on-chip-bus architecture for system-on-chips","authors":"Sanghun Lee, Chanho Lee, Hyuk-Jae Lee","doi":"10.1109/SOCC.2004.1362444","DOIUrl":null,"url":null,"abstract":"We can integrate more IP blocks on the same silicon die as the development of fabrication technologies and EDA tools. Consequently, we can design complicated SoC architecture including multi-processor. However, most of existing SoC buses have bottleneck in on-chip communication because of a shared bus architecture, which results in the performance degradation of the system. In most cases, the performance of multi-processor systems is determined by efficient on-chip communication and the well-balanced distribution of computation rather than the performance of processors. We propose an efficient SoC network architecture (SNA) using crossbar router which provides a solution to ensure enough communication bandwidth. The SNA can significantly reduce the bottleneck of on-chip communication by providing multi-channels. According to the proposed architecture, we design components for the SNA and build a model system. The proposed architecture has a better efficiency by 40% than the AMBA AHB according to a simulation result.","PeriodicalId":184894,"journal":{"name":"IEEE International SOC Conference, 2004. Proceedings.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International SOC Conference, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2004.1362444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We can integrate more IP blocks on the same silicon die as the development of fabrication technologies and EDA tools. Consequently, we can design complicated SoC architecture including multi-processor. However, most of existing SoC buses have bottleneck in on-chip communication because of a shared bus architecture, which results in the performance degradation of the system. In most cases, the performance of multi-processor systems is determined by efficient on-chip communication and the well-balanced distribution of computation rather than the performance of processors. We propose an efficient SoC network architecture (SNA) using crossbar router which provides a solution to ensure enough communication bandwidth. The SNA can significantly reduce the bottleneck of on-chip communication by providing multi-channels. According to the proposed architecture, we design components for the SNA and build a model system. The proposed architecture has a better efficiency by 40% than the AMBA AHB according to a simulation result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的用于片上系统的多通道片上总线架构
随着制造技术和EDA工具的发展,我们可以在同一个硅芯片上集成更多的IP模块。因此,我们可以设计复杂的SoC架构,包括多处理器。然而,现有的SoC总线由于采用共享总线架构,在片上通信方面存在瓶颈,导致系统性能下降。在大多数情况下,多处理器系统的性能是由有效的片上通信和计算的均衡分布决定的,而不是由处理器的性能决定的。提出了一种基于交叉棒路由器的高效SoC网络架构(SNA),提供了一种保证足够通信带宽的解决方案。SNA通过提供多信道,大大降低了片上通信的瓶颈。根据提出的体系结构,设计了SNA的组件,并构建了模型系统。仿真结果表明,该结构比AMBA AHB的效率提高了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power-efficient implementation of turbo decoder in SDR system Clock tree tuning using shortest paths polygon An efficient reformulation based architecture for adaptive forward error correction decoding in wireless applications A high-speed power and resolution adaptive flash analog-to-digital converter Leakage aware SER reduction technique for UDSM logic circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1