5.1 A 60V auto-zero and chopper operational amplifier with 800kHz interleaved clocks and input bias-current trimming

Y. Kusuda
{"title":"5.1 A 60V auto-zero and chopper operational amplifier with 800kHz interleaved clocks and input bias-current trimming","authors":"Y. Kusuda","doi":"10.1109/ISSCC.2015.7062939","DOIUrl":null,"url":null,"abstract":"Precision operational amplifiers (opamp) with 30V supply operation have been widely used to support industrial, instrumentation, and other applications [1]. Most of them have been realized with BJT or JFET processes [1] to offer voltage noise PSD better than 10nV/√Hz and offset voltage drift better than 1μV/°C. Recently, opamps with similar specifications have become available using CMOS based processes [2-4], which can offer a cheaper wafer price. Auto-zeroing and/or chopping are used as essential techniques to reduce offset voltage drift and 1/f noise associated with CMOS input differential pairs. The switching action of those techniques, however, results in unwanted output ripples and glitches, which requires a post-filter and limits usable signal bandwidth. Increasing the switching frequency can extend the usable signal bandwidth, though it introduces DC errors such as offset voltage drift and input bias current. Maximum offset voltage drift of 0.02μV/°C and an input bias current of 600pA have been achieved [3], although the switching frequency at 60kHz limits the usable signal bandwidth. A high switching frequency of 333kHz has been achieved [2], while the maximum offset voltage drift and input bias current are 0.085μV/°C and 850pA, respectively.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7062939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Precision operational amplifiers (opamp) with 30V supply operation have been widely used to support industrial, instrumentation, and other applications [1]. Most of them have been realized with BJT or JFET processes [1] to offer voltage noise PSD better than 10nV/√Hz and offset voltage drift better than 1μV/°C. Recently, opamps with similar specifications have become available using CMOS based processes [2-4], which can offer a cheaper wafer price. Auto-zeroing and/or chopping are used as essential techniques to reduce offset voltage drift and 1/f noise associated with CMOS input differential pairs. The switching action of those techniques, however, results in unwanted output ripples and glitches, which requires a post-filter and limits usable signal bandwidth. Increasing the switching frequency can extend the usable signal bandwidth, though it introduces DC errors such as offset voltage drift and input bias current. Maximum offset voltage drift of 0.02μV/°C and an input bias current of 600pA have been achieved [3], although the switching frequency at 60kHz limits the usable signal bandwidth. A high switching frequency of 333kHz has been achieved [2], while the maximum offset voltage drift and input bias current are 0.085μV/°C and 850pA, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个60V自动调零和斩波运算放大器,带有800kHz交错时钟和输入偏置电流微调
具有30V供电操作的精密运算放大器(opamp)已广泛用于支持工业,仪器仪表和其他应用[1]。它们大多采用BJT或JFET工艺实现[1],提供优于10nV/√Hz的电压噪声PSD和优于1μ v /°C的偏置电压漂移。最近,类似规格的运放大器已经采用基于CMOS的工艺[2-4],可以提供更便宜的晶圆价格。自动调零和/或斩波被用作减少失调电压漂移和与CMOS输入差分对相关的1/f噪声的基本技术。然而,这些技术的开关动作会导致不必要的输出波纹和小故障,这需要后滤波器并限制可用的信号带宽。增加开关频率可以延长可用信号带宽,但会引入直流误差,如偏置电压漂移和输入偏置电流。虽然60kHz的开关频率限制了可用的信号带宽,但已经实现了最大失调电压漂移0.02μV/°C和600pA的输入偏置电流[3]。实现了333kHz的高开关频率[2],最大失调电压漂移和输入偏置电流分别为0.085μV/°C和850pA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
F2: Memory trends: From big data to wearable devices 13.6 A 600μW Bluetooth low-energy front-end receiver in 0.13μm CMOS technology 22.8 A 24-to-35Gb/s x4 VCSEL driver IC with multi-rate referenceless CDR in 0.13um SiGe BiCMOS 14.8 A 0.009mm2 2.06mW 32-to-2000MHz 2nd-order ΔΣ analogous bang-bang digital PLL with feed-forward delay-locked and phase-locked operations in 14nm FinFET technology 25.7 A 2.4GHz 4mW inductorless RF synthesizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1