IoMT Synthetic Cardiac Arrest Dataset for eHealth with AI-based Validation

Joydeb Dutta, Deepak Puthal
{"title":"IoMT Synthetic Cardiac Arrest Dataset for eHealth with AI-based Validation","authors":"Joydeb Dutta, Deepak Puthal","doi":"10.1109/ISVLSI59464.2023.10238552","DOIUrl":null,"url":null,"abstract":"In the present era, data plays a crucial role across various disciplines, serving as the foundation for exploration and advancements. However, in the domain of eHealth, a readily available dataset for training AI models to predict cardiac arrest using the internet of medical things (IoMT) is lacking. To bridge this gap, this research article addresses the need for a synthesized dataset that can be utilized by researchers in the eHealth field to evaluate the effectiveness of their AI/ML models. The article presents a synthesized IoMT dataset specifically designed for cardiac arrest prediction, incorporating valid ranges of IoMT-based medical features sourced from peer-reviewed journals and articles. This study offers the capability to generate synthetic datasets of varying sizes, catering to the specific requirements of researchers focused on cardiac arrest prediction for individual subjects (patients). The availability of such a dataset will contribute to the advancement of AI-driven research in the eHealth domain.","PeriodicalId":199371,"journal":{"name":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI59464.2023.10238552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the present era, data plays a crucial role across various disciplines, serving as the foundation for exploration and advancements. However, in the domain of eHealth, a readily available dataset for training AI models to predict cardiac arrest using the internet of medical things (IoMT) is lacking. To bridge this gap, this research article addresses the need for a synthesized dataset that can be utilized by researchers in the eHealth field to evaluate the effectiveness of their AI/ML models. The article presents a synthesized IoMT dataset specifically designed for cardiac arrest prediction, incorporating valid ranges of IoMT-based medical features sourced from peer-reviewed journals and articles. This study offers the capability to generate synthetic datasets of varying sizes, catering to the specific requirements of researchers focused on cardiac arrest prediction for individual subjects (patients). The availability of such a dataset will contribute to the advancement of AI-driven research in the eHealth domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IoMT合成心脏骤停数据集,用于基于人工智能验证的电子健康
在当今时代,数据在各个学科中发挥着至关重要的作用,是探索和进步的基础。然而,在电子健康领域,缺乏一个现成的数据集来训练人工智能模型,以使用医疗物联网(IoMT)预测心脏骤停。为了弥补这一差距,这篇研究文章解决了对一个综合数据集的需求,该数据集可以被电子健康领域的研究人员用来评估他们的AI/ML模型的有效性。本文介绍了一个专门为心脏骤停预测设计的综合IoMT数据集,结合了来自同行评审期刊和文章的基于IoMT的医学特征的有效范围。这项研究提供了生成不同大小的合成数据集的能力,以满足研究人员对个体受试者(患者)心脏骤停预测的特定要求。这样一个数据集的可用性将有助于在电子卫生领域推进人工智能驱动的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Compact Ferroelectric 2T-(n+1)C Cell to Implement AND-OR Logic in Memory 3D-TTP: Efficient Transient Temperature-Aware Power Budgeting for 3D-Stacked Processor-Memory Systems CellFlow: Automated Standard Cell Design Flow Versatile Signal Distribution Networks for Scalable Placement and Routing of Field-coupled Nanocomputing Technologies Revisiting Trojan Insertion Techniques for Post-Silicon Trojan Detection Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1