11.7 A multimodality CMOS sensor array for cell-based assay and drug screening

Jong Seok Park, T. Chi, J. Butts, Tracy A. Hookway, T. McDevitt, Hua Wang
{"title":"11.7 A multimodality CMOS sensor array for cell-based assay and drug screening","authors":"Jong Seok Park, T. Chi, J. Butts, Tracy A. Hookway, T. McDevitt, Hua Wang","doi":"10.1109/ISSCC.2015.7062999","DOIUrl":null,"url":null,"abstract":"Cell-based assays are powerful tools to characterize cell- or tissue-specific physiological behaviors under external biochemical stimuli. External biochemical stimuli trigger endogenous cellular mechanisms that produce a cascade of physiological changes, resulting in easily measurable signals. Cell-based assays are widely used for large-scale drug screening in the pharmaceutical industry, where in vitro cultured cells are used to characterize the potency and toxicity of thousands of chemicals, leading to new drug development. This is particularly relevant in individualized medicine as patient-derived cells can test personalized drug responses. However, most current cell-based assays are conducted on single-modality sensors (electrical or optical only), which cannot capture the complexity of multi-parameter physiological responses. Sequentially transporting cell samples through different sensor platforms results in low throughput and potential abrogation of cell functions, while parallel monitoring of multiple samples with different modalities is subject to cell-to-cell variation even in a homogeneous cell population.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7062999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Cell-based assays are powerful tools to characterize cell- or tissue-specific physiological behaviors under external biochemical stimuli. External biochemical stimuli trigger endogenous cellular mechanisms that produce a cascade of physiological changes, resulting in easily measurable signals. Cell-based assays are widely used for large-scale drug screening in the pharmaceutical industry, where in vitro cultured cells are used to characterize the potency and toxicity of thousands of chemicals, leading to new drug development. This is particularly relevant in individualized medicine as patient-derived cells can test personalized drug responses. However, most current cell-based assays are conducted on single-modality sensors (electrical or optical only), which cannot capture the complexity of multi-parameter physiological responses. Sequentially transporting cell samples through different sensor platforms results in low throughput and potential abrogation of cell functions, while parallel monitoring of multiple samples with different modalities is subject to cell-to-cell variation even in a homogeneous cell population.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
11.7用于细胞分析和药物筛选的多模态CMOS传感器阵列
基于细胞的检测是在外部生化刺激下描述细胞或组织特异性生理行为的有力工具。外部生化刺激触发内源性细胞机制,产生一系列生理变化,产生易于测量的信号。基于细胞的检测被广泛用于制药行业的大规模药物筛选,在那里,体外培养的细胞被用来表征数千种化学物质的效力和毒性,从而导致新药的开发。这在个体化医疗中尤其重要,因为患者来源的细胞可以测试个体化药物反应。然而,目前大多数基于细胞的检测都是在单模态传感器(仅电或光学)上进行的,这无法捕获多参数生理反应的复杂性。通过不同的传感器平台顺序运输细胞样本会导致低通量和潜在的细胞功能丧失,而以不同方式并行监测多个样本即使在均匀的细胞群体中也会受到细胞间变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
F2: Memory trends: From big data to wearable devices 13.6 A 600μW Bluetooth low-energy front-end receiver in 0.13μm CMOS technology 22.8 A 24-to-35Gb/s x4 VCSEL driver IC with multi-rate referenceless CDR in 0.13um SiGe BiCMOS 14.8 A 0.009mm2 2.06mW 32-to-2000MHz 2nd-order ΔΣ analogous bang-bang digital PLL with feed-forward delay-locked and phase-locked operations in 14nm FinFET technology 25.7 A 2.4GHz 4mW inductorless RF synthesizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1