Deep Neural Network-based Detection and Partial Response Equalization for Multilayer Magnetic Recording

Ahmed Aboutaleb, Amirhossein Sayyafan, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, R. Wood
{"title":"Deep Neural Network-based Detection and Partial Response Equalization for Multilayer Magnetic Recording","authors":"Ahmed Aboutaleb, Amirhossein Sayyafan, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, R. Wood","doi":"10.1109/TMRC49521.2020.9366719","DOIUrl":null,"url":null,"abstract":"The hard disk drive (HDD) industry stores data at areal densities close to the capacity limit of the onedimensional (1D) magnetic recording channel [1]. New technologies are emerging to increase density, including heat assisted magnetic recording (HAMR), microwave-assisted magnetic recording (MAMR), and two-dimensional magnetic recording (TDMR). TDMR employs 2D signal processing to achieve significant density gains, without changes to existing magnetic media. Recent encouraging studies [2] –[5] propose multilayer magnetic recording (MLMR): vertical stacking of an additional magnetic media layer to a TDMR system to achieve further density gains. Using a realistic grain flipping probability (GFP) model to generate waveforms [3], [4], we investigate the design of deep neural network (DNN) based methods for equalization and detection for MLMR.","PeriodicalId":131361,"journal":{"name":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC49521.2020.9366719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The hard disk drive (HDD) industry stores data at areal densities close to the capacity limit of the onedimensional (1D) magnetic recording channel [1]. New technologies are emerging to increase density, including heat assisted magnetic recording (HAMR), microwave-assisted magnetic recording (MAMR), and two-dimensional magnetic recording (TDMR). TDMR employs 2D signal processing to achieve significant density gains, without changes to existing magnetic media. Recent encouraging studies [2] –[5] propose multilayer magnetic recording (MLMR): vertical stacking of an additional magnetic media layer to a TDMR system to achieve further density gains. Using a realistic grain flipping probability (GFP) model to generate waveforms [3], [4], we investigate the design of deep neural network (DNN) based methods for equalization and detection for MLMR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的多层磁记录检测与部分响应均衡
硬盘驱动器(HDD)行业存储数据的面密度接近一维(1D)磁记录通道[1]的容量极限。增加密度的新技术正在出现,包括热辅助磁记录(HAMR),微波辅助磁记录(MAMR)和二维磁记录(TDMR)。TDMR采用二维信号处理来获得显著的密度增益,而无需改变现有的磁性介质。最近令人鼓舞的研究[2]-[5]提出了多层磁记录(MLMR):在TDMR系统上垂直堆叠额外的磁介质层,以获得进一步的密度增益。利用真实的颗粒翻转概率(GFP)模型生成[3],[4]波形,研究了基于深度神经网络(DNN)的MLMR均衡和检测方法的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Neural Network Media Noise Predictor Turbo-detection System for One and Two Dimensional High-Density Magnetic Recording Effect of spin torque oscillator cone angle on recording performance in microwave assisted magnetic recording A Study on Neural Network Detector in Smr System Simulating Resonant Magnetization Reversals in Nanomagnets Review of STT-MRAM circuit design strategies, and a 40-nm 1T-1MTJ 128Mb STT-MRAM design practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1