Neural networks for multiple fault diagnosis in analog circuits

A. Fanni, A. Giua, Enrico Sandoli
{"title":"Neural networks for multiple fault diagnosis in analog circuits","authors":"A. Fanni, A. Giua, Enrico Sandoli","doi":"10.1109/DFTVS.1993.595826","DOIUrl":null,"url":null,"abstract":"Fault diagnosis of analog circuits is a complex problem. The authors discuss how the features of neural networks of learning from examples and of generalizing may be used to solve this problem. In a detailed applicative example, it is shown how, given the voltages values in a set of test points, a network may be trained to recognize catastrophic single faults on a circuit part of a direct current motor drive. The network is then used to diagnose multiple faults on two and three components. In this case the network is generally able to detect at least one of the malfunctioning components, although less sharply than in the case of single faults.","PeriodicalId":213798,"journal":{"name":"Proceedings of 1993 IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFTVS.1993.595826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Fault diagnosis of analog circuits is a complex problem. The authors discuss how the features of neural networks of learning from examples and of generalizing may be used to solve this problem. In a detailed applicative example, it is shown how, given the voltages values in a set of test points, a network may be trained to recognize catastrophic single faults on a circuit part of a direct current motor drive. The network is then used to diagnose multiple faults on two and three components. In this case the network is generally able to detect at least one of the malfunctioning components, although less sharply than in the case of single faults.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络在模拟电路多故障诊断中的应用
模拟电路的故障诊断是一个复杂的问题。作者讨论了如何利用神经网络的实例学习和泛化特性来解决这一问题。在一个详细的应用示例中,展示了如何在给定一组测试点的电压值的情况下,训练网络来识别直流电机驱动电路部分的灾难性单故障。然后,该网络用于诊断两个或三个组件的多个故障。在这种情况下,网络通常能够检测到至少一个故障组件,尽管不如单个故障的情况明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The T9 transputer: A practical example of the application of standard test techniques Fault detection in sequential circuits through functional testing A highly testable 1-out-of-3 CMOS checker System level policies for fault tolerance issues in the FERMI project Topological optimization of PLAs for yield enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1