Inversion of the Spin-Torque Effect in Mtjs Via Resonant Magnon Scattering

I. Barsukov, H. Lee, A. Jara, Yu-Jin Chen, A. M. Gonçalves, C. Sha, J. Katine, R. Arias, B. Ivanov, I. Krivorotov
{"title":"Inversion of the Spin-Torque Effect in Mtjs Via Resonant Magnon Scattering","authors":"I. Barsukov, H. Lee, A. Jara, Yu-Jin Chen, A. M. Gonçalves, C. Sha, J. Katine, R. Arias, B. Ivanov, I. Krivorotov","doi":"10.1109/TMRC49521.2020.9366713","DOIUrl":null,"url":null,"abstract":"Nanoscale magnets are the building blocks of many existing and emergent spintronic applications, e.g. nonvolatile spin torque memory, spin torque oscillators, neuromorphic and probabilistic computing. Controlling magnetic damping in nanomagnets holds the key to improving the performance of future technologies. Here, we experimentally demonstrate and theoretically corroborate that a ferromagnetic nano-particle (free layer of a magnetic tunnel junction (MTJ) nanopillar) can exhibit spin dynamics qualitatively different from those predicted by the harmonic oscillator model. Nonlinear contributions to the damping can be unusually strong, and the effective damping parameter itself can exhibit resonant dependence on field/frequency [1].","PeriodicalId":131361,"journal":{"name":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC49521.2020.9366713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoscale magnets are the building blocks of many existing and emergent spintronic applications, e.g. nonvolatile spin torque memory, spin torque oscillators, neuromorphic and probabilistic computing. Controlling magnetic damping in nanomagnets holds the key to improving the performance of future technologies. Here, we experimentally demonstrate and theoretically corroborate that a ferromagnetic nano-particle (free layer of a magnetic tunnel junction (MTJ) nanopillar) can exhibit spin dynamics qualitatively different from those predicted by the harmonic oscillator model. Nonlinear contributions to the damping can be unusually strong, and the effective damping parameter itself can exhibit resonant dependence on field/frequency [1].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共振磁振子散射反演Mtjs中自旋转矩效应
纳米级磁体是许多现有和新兴自旋电子应用的基石,例如非易失性自旋转矩存储器,自旋转矩振荡器,神经形态和概率计算。控制纳米磁体中的磁阻尼是提高未来技术性能的关键。在这里,我们通过实验证明并从理论上证实了铁磁性纳米粒子(磁隧道结(MTJ)纳米柱的自由层)可以表现出与谐振子模型预测的自旋动力学性质不同的特性。阻尼的非线性贡献可能异常强烈,有效阻尼参数本身可能表现出对场/频率[1]的共振依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Neural Network Media Noise Predictor Turbo-detection System for One and Two Dimensional High-Density Magnetic Recording Effect of spin torque oscillator cone angle on recording performance in microwave assisted magnetic recording A Study on Neural Network Detector in Smr System Simulating Resonant Magnetization Reversals in Nanomagnets Review of STT-MRAM circuit design strategies, and a 40-nm 1T-1MTJ 128Mb STT-MRAM design practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1