25.9 A ±3ppm 1.1mW FBAR frequency reference with 750MHz output and 750mV supply

K. Sankaragomathi, Jabeom Koo, R. Ruby, B. Otis
{"title":"25.9 A ±3ppm 1.1mW FBAR frequency reference with 750MHz output and 750mV supply","authors":"K. Sankaragomathi, Jabeom Koo, R. Ruby, B. Otis","doi":"10.1109/ISSCC.2015.7063122","DOIUrl":null,"url":null,"abstract":"Multiple emerging wireless applications (body-worn devices and IoT, for example) will demand previously impossible thin-film form factors and low system cost. One key enabling technology for this paradigm is a new class of radios that offer cost/size approaching RFID while still maintaining peer-to-peer connectivity like more complex radios. These radios need to be cheap and thin, which means they should be fabricated using wafer-scale semiconductor processing. The existing paradigm (quartz crystals used as a frequency reference in radios) is a huge bottleneck in reducing cost and size of these devices. MEMS frequency references have replaced quartz crystals in some applications [1-3]. For example, [1] reports a MEMS reference with 0.5ppm stability but the power consumption (~100mW) and supply voltage (1.8V) are not suitable for low-voltage/low-power radios. [2] reports a 32kHz, 3ppm reference for mobile time-keeping applications, but is unsuitable for radio frequency synthesis due to its low output frequency. In this paper, we report a thin-Film Bulk-Acoustic-Resonator (FBAR) frequency reference suitable for low-voltage/low-power radio applications. The reported FBAR reference achieves a stability of +/- 3ppm from 0 to 90C. We achieve this by using an electronic temperature compensation scheme to improve the intrinsic +/-50ppm stability of an FBAR oscillator down to +/- 3ppm (Fig. 25.9.1). The core of the temperature compensation scheme is a temperature sensor that achieves a 1.75mK resolution at a 100mS sampling time.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7063122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Multiple emerging wireless applications (body-worn devices and IoT, for example) will demand previously impossible thin-film form factors and low system cost. One key enabling technology for this paradigm is a new class of radios that offer cost/size approaching RFID while still maintaining peer-to-peer connectivity like more complex radios. These radios need to be cheap and thin, which means they should be fabricated using wafer-scale semiconductor processing. The existing paradigm (quartz crystals used as a frequency reference in radios) is a huge bottleneck in reducing cost and size of these devices. MEMS frequency references have replaced quartz crystals in some applications [1-3]. For example, [1] reports a MEMS reference with 0.5ppm stability but the power consumption (~100mW) and supply voltage (1.8V) are not suitable for low-voltage/low-power radios. [2] reports a 32kHz, 3ppm reference for mobile time-keeping applications, but is unsuitable for radio frequency synthesis due to its low output frequency. In this paper, we report a thin-Film Bulk-Acoustic-Resonator (FBAR) frequency reference suitable for low-voltage/low-power radio applications. The reported FBAR reference achieves a stability of +/- 3ppm from 0 to 90C. We achieve this by using an electronic temperature compensation scheme to improve the intrinsic +/-50ppm stability of an FBAR oscillator down to +/- 3ppm (Fig. 25.9.1). The core of the temperature compensation scheme is a temperature sensor that achieves a 1.75mK resolution at a 100mS sampling time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
25.9 A±3ppm 1.1mW FBAR频率参考,750MHz输出和750mV电源
多种新兴无线应用(例如,穿戴式设备和物联网)将要求以前不可能实现的薄膜尺寸和低系统成本。这种模式的一个关键实现技术是一种新型无线电,它提供接近RFID的成本/尺寸,同时仍然保持像更复杂的无线电一样的点对点连接。这些无线电需要便宜和薄,这意味着它们应该使用晶圆级半导体加工制造。现有的范例(在无线电中用作频率参考的石英晶体)是降低这些设备成本和尺寸的巨大瓶颈。在一些应用中,MEMS频率参考已经取代了石英晶体[1-3]。例如,[1]报告了一个稳定性为0.5ppm的MEMS参考,但功耗(~100mW)和电源电压(1.8V)不适合低压/低功率无线电。[2]报告了32kHz, 3ppm的移动计时应用参考,但由于其低输出频率,不适合射频合成。在本文中,我们报告了一种适用于低压/低功率无线电应用的薄膜体声谐振器(FBAR)频率基准。报告的FBAR参考值在0至90℃范围内达到+/- 3ppm的稳定性。我们通过使用电子温度补偿方案来实现这一目标,将FBAR振荡器的+/-50ppm固有稳定性提高到+/- 3ppm(图25.9.1)。温度补偿方案的核心是一个温度传感器,在100mS采样时间内达到1.75mK的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
F2: Memory trends: From big data to wearable devices 13.6 A 600μW Bluetooth low-energy front-end receiver in 0.13μm CMOS technology 22.8 A 24-to-35Gb/s x4 VCSEL driver IC with multi-rate referenceless CDR in 0.13um SiGe BiCMOS 14.8 A 0.009mm2 2.06mW 32-to-2000MHz 2nd-order ΔΣ analogous bang-bang digital PLL with feed-forward delay-locked and phase-locked operations in 14nm FinFET technology 25.7 A 2.4GHz 4mW inductorless RF synthesizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1