Step drift doping profile for high voltage DI lateral power devices

R. Sunkavalli, A. Tamba, B. J. Baliga
{"title":"Step drift doping profile for high voltage DI lateral power devices","authors":"R. Sunkavalli, A. Tamba, B. J. Baliga","doi":"10.1109/SOI.1995.526499","DOIUrl":null,"url":null,"abstract":"The cell pitch of high voltage lateral power devices determines many important device performance specifications such as the area of the chip, on-state voltage drop and the maximum controllable current. Since the cell pitch of lateral power devices is determined by the long drift region lengths required to support high voltages in accordance with the RESURF principle, it is desirable to have a uniform lateral electric field distribution in the drift region to minimize the drift region length for a device with a given breakdown voltage. It is generally assumed that the breakdown voltage of DI RESURF devices scales up linearly with increasing drift region length till a limit associated with vertical breakdown is reached. However, 2D numerical simulations of the breakdown of DI PIN diodes indicate non-ideal electric field distribution in the drift region. Two techniques have been studied for achieving a more uniform electric field distribution in the drift region for DI lateral power devices. One technique involves the use of a SIPOS field plate over the drift region to spread the electric field uniformly. The other technique involves tailoring the drift region doping profile, so that the drift region charge increases linearly from the anode end to the cathode end.","PeriodicalId":149490,"journal":{"name":"1995 IEEE International SOI Conference Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 IEEE International SOI Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1995.526499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The cell pitch of high voltage lateral power devices determines many important device performance specifications such as the area of the chip, on-state voltage drop and the maximum controllable current. Since the cell pitch of lateral power devices is determined by the long drift region lengths required to support high voltages in accordance with the RESURF principle, it is desirable to have a uniform lateral electric field distribution in the drift region to minimize the drift region length for a device with a given breakdown voltage. It is generally assumed that the breakdown voltage of DI RESURF devices scales up linearly with increasing drift region length till a limit associated with vertical breakdown is reached. However, 2D numerical simulations of the breakdown of DI PIN diodes indicate non-ideal electric field distribution in the drift region. Two techniques have been studied for achieving a more uniform electric field distribution in the drift region for DI lateral power devices. One technique involves the use of a SIPOS field plate over the drift region to spread the electric field uniformly. The other technique involves tailoring the drift region doping profile, so that the drift region charge increases linearly from the anode end to the cathode end.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高压直喷侧功率器件的阶跃漂移掺杂剖面
高压横向电源器件的单元间距决定了许多重要的器件性能指标,如芯片面积、导通电压降和最大可控电流。由于侧向功率器件的单元间距是由支撑高电压所需的较长的漂移区长度决定的,因此对于给定击穿电压的器件,希望在漂移区具有均匀的侧向电场分布,以使漂移区长度最小。一般认为,随着漂移区长度的增加,直插式RESURF器件的击穿电压呈线性增加,直至达到与垂直击穿相关的极限。然而,对DI PIN二极管击穿的二维数值模拟表明,在漂移区域的电场分布并不理想。为使直流电动力器件在漂移区获得更均匀的电场分布,研究了两种技术。一种技术是在漂移区域上使用SIPOS场板来均匀扩散电场。另一种技术涉及调整漂移区掺杂剖面,使漂移区电荷从阳极端到阴极端线性增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical threshold voltage model for short channel n/sup +/-p/sup +/ double-gate SOI MOSFETs Front and back gate interface-trap generation due to hot carrier stress in fully depleted SOI/MOSFETs SOI material characterization using optical second harmonic generation Minimum parasitic resistance for ultra-thin SOI MOSFET with high-permittivity gate insulator performed by lateral contact structure Transient effects in floating body SOI NMOSFETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1