On an Application of Denoising to the Uncertainty Quantification of Line Edge Roughness Estimation

Inimfon I. Akpabio, S. Savari
{"title":"On an Application of Denoising to the Uncertainty Quantification of Line Edge Roughness Estimation","authors":"Inimfon I. Akpabio, S. Savari","doi":"10.1109/asmc54647.2022.9792521","DOIUrl":null,"url":null,"abstract":"Prediction intervals which describe the reliability of the predictive performance of regression models are useful to influence decision making and to build trust in machine learning. Normalized conformal prediction is a rigorous and simple guideline to construct prediction intervals which has no distributional assumptions but requires other types of modeling to assess a regression model fit to training data, and quantile regression is a widely used technique in other fields to construct prediction intervals. We propose image denoising and other image processing techniques as a foundation to prediction interval construction procedures for line edge roughness (LER) estimation from noisy scanning electron microscope (SEM) images and show that these innovations offer significant improvements in efficiency over earlier approaches used to study the deep convolutional neural network EDGENet.","PeriodicalId":436890,"journal":{"name":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asmc54647.2022.9792521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Prediction intervals which describe the reliability of the predictive performance of regression models are useful to influence decision making and to build trust in machine learning. Normalized conformal prediction is a rigorous and simple guideline to construct prediction intervals which has no distributional assumptions but requires other types of modeling to assess a regression model fit to training data, and quantile regression is a widely used technique in other fields to construct prediction intervals. We propose image denoising and other image processing techniques as a foundation to prediction interval construction procedures for line edge roughness (LER) estimation from noisy scanning electron microscope (SEM) images and show that these innovations offer significant improvements in efficiency over earlier approaches used to study the deep convolutional neural network EDGENet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
去噪在线边缘粗糙度估计不确定性量化中的应用
描述回归模型预测性能可靠性的预测区间对于影响决策和在机器学习中建立信任非常有用。归一化保形预测是构建预测区间的一种严格而简单的方法,它没有分布假设,但需要其他类型的建模来评估回归模型与训练数据的拟合,分位数回归是其他领域广泛使用的构建预测区间的技术。我们提出了图像去噪和其他图像处理技术,作为从噪声扫描电子显微镜(SEM)图像中估计线边缘粗糙度(LER)的预测区间构建过程的基础,并表明这些创新比用于研究深度卷积神经网络EDGENet的早期方法在效率上有显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-wafer organic defect review and classification with universal surface enhanced Raman spectroscopy Supply crisis parts commodities management during unplanned FAB shutdown recovery Nuisance Rate Improvement of E-beam Defect Classification Real-Time Automated Socket Inspection using Advanced Computer Vision and Machine Learning : DI: Defect Inspection and Reduction Negative Mode E-Beam Inspection of the Contact Layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1