Short-Term Load Power Prediction Based Deep Learning Gated Recurrent Unit in Solar Power Plant

Chao-Tsung Yeh, Phuong Nguyen Thanh, M. Cho, Tien Nguyen Quoc
{"title":"Short-Term Load Power Prediction Based Deep Learning Gated Recurrent Unit in Solar Power Plant","authors":"Chao-Tsung Yeh, Phuong Nguyen Thanh, M. Cho, Tien Nguyen Quoc","doi":"10.1109/ACEEE56193.2022.9851878","DOIUrl":null,"url":null,"abstract":"Forecasting the load power in the solar plant is essential to maximize the available profit from the solar plant. This project develops the Gated Recurrent Unit (GRU) based deep learning machine to predict hourly load power in a solar plant. The weather parameters influence the load power, which affects the user behavior of load power. All selected features and the target variable are collected for more than one year in a solar plant installed in Taiwan. The collected data are utilized in the simulation of the Gated Recurrent Unit to evaluate the accuracy and performance in predicting the short-term load power. The performances of GRU are compared with the RNN model by statistical benchmarks. The experiment results prove that the GRU-based deep learning machine could achieve higher accuracy and better stability in predicting the short-term load power in solar plants.","PeriodicalId":142893,"journal":{"name":"2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE)","volume":"223 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACEEE56193.2022.9851878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Forecasting the load power in the solar plant is essential to maximize the available profit from the solar plant. This project develops the Gated Recurrent Unit (GRU) based deep learning machine to predict hourly load power in a solar plant. The weather parameters influence the load power, which affects the user behavior of load power. All selected features and the target variable are collected for more than one year in a solar plant installed in Taiwan. The collected data are utilized in the simulation of the Gated Recurrent Unit to evaluate the accuracy and performance in predicting the short-term load power. The performances of GRU are compared with the RNN model by statistical benchmarks. The experiment results prove that the GRU-based deep learning machine could achieve higher accuracy and better stability in predicting the short-term load power in solar plants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习门控循环单元的太阳能电站短期负荷预测
预测太阳能电站的负荷功率是实现太阳能电站可获得利润最大化的关键。该项目开发了基于门控循环单元(GRU)的深度学习机器,用于预测太阳能发电厂的小时负荷功率。天气参数影响负荷功率,进而影响负荷功率的用户行为。所有选定的特征和目标变量都是在台湾安装的太阳能发电厂收集了一年以上的数据。将采集到的数据用于门控循环单元的仿真,以评估其预测短期负荷功率的准确性和性能。通过统计基准比较GRU模型与RNN模型的性能。实验结果证明,基于gru的深度学习机在预测太阳能电站短期负荷功率方面具有更高的准确性和更好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Window Openings on Energy Consumption of an University Building: A Case Study in Izmir A Design and Implementation of Visualization Platform for Intelligent Environmental Monitoring Based on IoT Methodological Proposal to Determine the Mobile Reserve of Power Transformers Considering Risks and Uncertainties Sensorless Control of Permanent Magnet Synchronous Linear Motor Based on Improved Second-Order Generalized Integrators Quality of the Electrical Service of the Peruvian Electrical System in Comparison with International Countries Through Data Envelope Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1