A wide-band microstrip-to-microstrip multi-layered via transition using LTCC technology

Chih-Chun Tsai, Yung-Shou Cheng, Ting-Yi Huang, R. Wu
{"title":"A wide-band microstrip-to-microstrip multi-layered via transition using LTCC technology","authors":"Chih-Chun Tsai, Yung-Shou Cheng, Ting-Yi Huang, R. Wu","doi":"10.1109/EDAPS.2009.5403997","DOIUrl":null,"url":null,"abstract":"A wide-band microstrip-to-microstrip via transition used for connecting integrated circuits and antenna array in a multi-layered low-temperature co-fired ceramic substrate is investigated in this paper. The via transition is decomposed into external and internal segments to facilitate the design. The equivalent impedance of internal segment, consisting of multi-layered through-hole via with four ground vias, is calculated from the lump-circuit model generated by Ansoft Q3D Extractor. The electrical performance of the external segment, consisting of via to microstrip lines, is evaluated by the microstrip-to-coax transition to choose appropriate via physical parameters. Finally, the geometrical parameters of entire transition are obtained by combining the results of the external and internal segments. It has been demonstrated, through the simulation results by commercial software Ansoft HFSS, that the return loss is better than 19dB over a band from DC up to 70GHz with an in-band insertion loss better than 0.48dB.","PeriodicalId":370741,"journal":{"name":"2009 IEEE Electrical Design of Advanced Packaging & Systems Symposium (EDAPS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Electrical Design of Advanced Packaging & Systems Symposium (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2009.5403997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A wide-band microstrip-to-microstrip via transition used for connecting integrated circuits and antenna array in a multi-layered low-temperature co-fired ceramic substrate is investigated in this paper. The via transition is decomposed into external and internal segments to facilitate the design. The equivalent impedance of internal segment, consisting of multi-layered through-hole via with four ground vias, is calculated from the lump-circuit model generated by Ansoft Q3D Extractor. The electrical performance of the external segment, consisting of via to microstrip lines, is evaluated by the microstrip-to-coax transition to choose appropriate via physical parameters. Finally, the geometrical parameters of entire transition are obtained by combining the results of the external and internal segments. It has been demonstrated, through the simulation results by commercial software Ansoft HFSS, that the return loss is better than 19dB over a band from DC up to 70GHz with an in-band insertion loss better than 0.48dB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用LTCC技术的宽带微带到微带多层通流过渡
本文研究了一种在多层低温共烧陶瓷衬底上连接集成电路和天线阵列的宽带微带到微带过渡。通过过渡被分解为外部和内部段,以方便设计。利用Ansoft Q3D Extractor生成的集块电路模型,计算了由多层通孔通孔和四个接地通孔组成的内段的等效阻抗。由微带到微带线组成的外部段的电性能通过微带到同轴线的转换来评估,以选择适当的通过物理参数。最后,结合内外段的结果,得到整个过渡段的几何参数。通过商业软件Ansoft HFSS的仿真结果表明,在直流至70GHz范围内,回波损耗优于19dB,带内插入损耗优于0.48dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new wide stopband microstrip bandpass filter with miniaturized interdigital capacitor resonator Precise analysis and modeling of far-end crosstalk and far-end crosstalk saturation using mode analysis in coupled microstrip lines Simulation of human head exposed to handset using hybrid NFM/MoM techniques Novel I/O-bump design and optimization for chip-package codesign Analysis of frequency-dependent lossy transmission lines driven by CMOS gates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1