{"title":"Electronic and vibrational properties of 2D materials from monolayer to bulk","authors":"M. Neupane","doi":"10.1109/IWCE.2015.7301978","DOIUrl":null,"url":null,"abstract":"The placement of two dimensional (2D) materials such as hexagonal boron nitride (h-BN) and transition metal dichalcogenide (TMDC) at the forefront of materials and device research was pioneered by the discovery of graphene, an atomically thin 2D allotrope of carbon obtained through mechanical exfoliation. These 2D materials possess a wide range of electronic behaviors from insulator to metallic, resulting from their in-plane strong covalent bonds and their weaker out-of-plane coupling. The intrinsic bandgap of the semiconducting TMDCs makes them materials of choice for next-generation low-dimensional optical and electronic devices for defense and civilian applications. These 2D van der Waal (vdW) materials hold promise for a range of electronic, thermoelectric and optoelectronic devices such as field effect transistor (FET), light emitting device (LED), energy harvesting devices and ultrafast optical devices.","PeriodicalId":165023,"journal":{"name":"2015 International Workshop on Computational Electronics (IWCE)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2015.7301978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The placement of two dimensional (2D) materials such as hexagonal boron nitride (h-BN) and transition metal dichalcogenide (TMDC) at the forefront of materials and device research was pioneered by the discovery of graphene, an atomically thin 2D allotrope of carbon obtained through mechanical exfoliation. These 2D materials possess a wide range of electronic behaviors from insulator to metallic, resulting from their in-plane strong covalent bonds and their weaker out-of-plane coupling. The intrinsic bandgap of the semiconducting TMDCs makes them materials of choice for next-generation low-dimensional optical and electronic devices for defense and civilian applications. These 2D van der Waal (vdW) materials hold promise for a range of electronic, thermoelectric and optoelectronic devices such as field effect transistor (FET), light emitting device (LED), energy harvesting devices and ultrafast optical devices.