A mobility enhancement strategy for sub-14nm power-efficient FDSOI technologies

B. Desalvo, P. Morin, M. Pala, G. Ghibaudo, O. Rozeau, Q. Liu, A. Pofelski, S. Martini, M. Cassé, S. Pilorget, F. Allibert, F. Chafik, T. Poiroux, P. Scheer, R. Southwick, D. Chanemougame, L. Grenouillet, K. Cheng, F. Andrieu, S. Barraud, S. Maitrejean, E. Augendre, H. Kothari, N. Loubet, W. Kleemeier, M. Celik, O. Faynot, M. Vinet, R. Sampson, B. Doris
{"title":"A mobility enhancement strategy for sub-14nm power-efficient FDSOI technologies","authors":"B. Desalvo, P. Morin, M. Pala, G. Ghibaudo, O. Rozeau, Q. Liu, A. Pofelski, S. Martini, M. Cassé, S. Pilorget, F. Allibert, F. Chafik, T. Poiroux, P. Scheer, R. Southwick, D. Chanemougame, L. Grenouillet, K. Cheng, F. Andrieu, S. Barraud, S. Maitrejean, E. Augendre, H. Kothari, N. Loubet, W. Kleemeier, M. Celik, O. Faynot, M. Vinet, R. Sampson, B. Doris","doi":"10.1109/IEDM.2014.7047002","DOIUrl":null,"url":null,"abstract":"Continuous CMOS improvement has been achieved in recent years through strain engineering for mobility enhancement. Nevertheless, as transistor pitch is scaled down, conventional strain elements (as embedded stressors, stress liners) are loosing their effectiveness [1]. The use of strained materials for the channel to boost performance is thus essential. In this paper, we present an original multilevel evaluation methodology for stress engineering design in next-generation power-efficient devices. Fully-Depleted-Silicon-On-Insulator (FDSOI) is chosen as the ideal test vehicle, as it offers the advantage of sustaining significant stress within the channel without plastic relaxation (the thin channel staying below the critical thickness [2]). Starting from 3D mechanical simulations and piezoresistive coefficient data, an original, simple, physically-based model for holes/electrons mobility enhancement in strained devices is developed. The model is calibrated on physical measurements and electrical data of state-of-the-art devices. Non-Equilibrium Greens Function (NEGF) quantum simulations of holes/electrons stress-enhanced mobility give physical insights into mobility behavior at large stress (~3GPa). Finally, the new strained-enhanced mobility model is introduced in an industrial compact model [3] to project evaluation at the circuit level.","PeriodicalId":309325,"journal":{"name":"2014 IEEE International Electron Devices Meeting","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2014.7047002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Continuous CMOS improvement has been achieved in recent years through strain engineering for mobility enhancement. Nevertheless, as transistor pitch is scaled down, conventional strain elements (as embedded stressors, stress liners) are loosing their effectiveness [1]. The use of strained materials for the channel to boost performance is thus essential. In this paper, we present an original multilevel evaluation methodology for stress engineering design in next-generation power-efficient devices. Fully-Depleted-Silicon-On-Insulator (FDSOI) is chosen as the ideal test vehicle, as it offers the advantage of sustaining significant stress within the channel without plastic relaxation (the thin channel staying below the critical thickness [2]). Starting from 3D mechanical simulations and piezoresistive coefficient data, an original, simple, physically-based model for holes/electrons mobility enhancement in strained devices is developed. The model is calibrated on physical measurements and electrical data of state-of-the-art devices. Non-Equilibrium Greens Function (NEGF) quantum simulations of holes/electrons stress-enhanced mobility give physical insights into mobility behavior at large stress (~3GPa). Finally, the new strained-enhanced mobility model is introduced in an industrial compact model [3] to project evaluation at the circuit level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
14nm以下功率效率FDSOI技术的移动性增强策略
近年来,通过应变工程提高了CMOS的迁移率,实现了CMOS的持续改进。然而,随着晶体管间距的缩小,传统的应变元件(如嵌入式应力源,应力衬垫)正在失去其有效性[1]。因此,使用应变材料来提高通道的性能是必不可少的。在本文中,我们提出了一种用于下一代节能器件应力工程设计的原始多级评估方法。选择完全耗尽绝缘体上硅(FDSOI)作为理想的测试载体,因为它具有在通道内保持显著应力而没有塑性松弛的优势(薄通道保持在临界厚度以下[2])。从三维力学模拟和压阻系数数据出发,建立了一个原始的、简单的、基于物理的应变器件中空穴/电子迁移率增强模型。该模型是根据最先进设备的物理测量和电气数据进行校准的。空穴/电子应力增强迁移率的非平衡格林函数(NEGF)量子模拟为大应力(~3GPa)下的迁移率行为提供了物理见解。最后,在工业紧凑型模型[3]中引入了新的应变增强迁移率模型,用于电路级的项目评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NBTI of Ge pMOSFETs: Understanding defects and enabling lifetime prediction 55-µA GexTe1−x/Sb2Te3 superlattice topological-switching random access memory (TRAM) and study of atomic arrangement in Ge-Te and Sb-Te structures GaN-based Gate Injection Transistors for power switching applications Comprehensive analysis of deformation of interfacial micro-nano structure by applied force in triboelectric energy harvester Novel intrinsic and extrinsic engineering for high-performance high-density self-aligned InGaAs MOSFETs: Precise channel thickness control and sub-40-nm metal contacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1