Multi-layer SOI island technology by selective epitaxial growth for single-gate and double-gate MOSFETs

S. Pae, J. Denton, G. Neudeck
{"title":"Multi-layer SOI island technology by selective epitaxial growth for single-gate and double-gate MOSFETs","authors":"S. Pae, J. Denton, G. Neudeck","doi":"10.1109/SOI.1999.819876","DOIUrl":null,"url":null,"abstract":"Continued device scaling in bulk MOSFETs beyond the sub-100 nm regime may require transition to advanced SOI technologies. It has been reported that the thin film fully-depleted (FD) SOI structure is promising for low voltage, high speed applications due to the improved short channel tolerance and lack of body effect (Wong et al, 1998). However, current techniques to obtain bulk-like quality material for very thin SOI have proved difficult to manufacture in terms of cost, material defects and SOI thickness variation across the wafer. The SOI thickness variation results in V/sub T/ variation, which is a major drawback in FD-SOI technology. Selective epitaxial growth (SEG) offers an alternative way of obtaining a device quality SOI material when it is grown laterally (epitaxial lateral overgrowth; ELO) over the field SiO/sub 2/. The local area chemical mechanical polishing (CMP) etch stop gives good controlled thickness of uniform thin SOI films where FD-SOI MOSFETs can be fabricated (Pae et al, 1998 and 1999). One distinctive advantage of the ELO technique is the formation of very thin bottom gate SiO/sub 2/ for double gate MOSFETs (Wong et al. 1997; Denton et al. 1995), which is difficult to obtain in other SOI technologies. This enables improved dynamic V/sub T/ control using low back gate bias. We report here the most recent results of deep-submicron FD-SOI P-MOSFETs fabricated in two different layers of SOI islands created entirely by ELO. Device characteristics and dynamic V/sub T/ shifting are discussed.","PeriodicalId":117832,"journal":{"name":"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1999.819876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Continued device scaling in bulk MOSFETs beyond the sub-100 nm regime may require transition to advanced SOI technologies. It has been reported that the thin film fully-depleted (FD) SOI structure is promising for low voltage, high speed applications due to the improved short channel tolerance and lack of body effect (Wong et al, 1998). However, current techniques to obtain bulk-like quality material for very thin SOI have proved difficult to manufacture in terms of cost, material defects and SOI thickness variation across the wafer. The SOI thickness variation results in V/sub T/ variation, which is a major drawback in FD-SOI technology. Selective epitaxial growth (SEG) offers an alternative way of obtaining a device quality SOI material when it is grown laterally (epitaxial lateral overgrowth; ELO) over the field SiO/sub 2/. The local area chemical mechanical polishing (CMP) etch stop gives good controlled thickness of uniform thin SOI films where FD-SOI MOSFETs can be fabricated (Pae et al, 1998 and 1999). One distinctive advantage of the ELO technique is the formation of very thin bottom gate SiO/sub 2/ for double gate MOSFETs (Wong et al. 1997; Denton et al. 1995), which is difficult to obtain in other SOI technologies. This enables improved dynamic V/sub T/ control using low back gate bias. We report here the most recent results of deep-submicron FD-SOI P-MOSFETs fabricated in two different layers of SOI islands created entirely by ELO. Device characteristics and dynamic V/sub T/ shifting are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单门和双门mosfet的选择性外延生长多层SOI岛技术
在超过亚100纳米范围的批量mosfet中,器件的持续缩放可能需要过渡到先进的SOI技术。据报道,薄膜全耗尽(FD) SOI结构由于改善了短通道容限和缺乏体效应,在低电压、高速应用中很有前景(Wong et al, 1998)。然而,从成本、材料缺陷和晶圆上的SOI厚度变化等方面来看,目前的技术很难制造出非常薄的SOI材料。SOI厚度的变化会导致V/sub / T的变化,这是FD-SOI技术的一个主要缺点。选择性外延生长(SEG)提供了一种在横向生长时获得器件质量SOI材料的替代方法(外延横向过度生长;ELO)在现场SiO/ sub2 /上。局部化学机械抛光(CMP)蚀刻停止可以很好地控制均匀的SOI薄膜厚度,从而可以制造FD-SOI mosfet (Pae等人,1998年和1999年)。ELO技术的一个显著优势是为双栅mosfet形成非常薄的底栅SiO/sub 2/ (Wong et al. 1997;Denton et al. 1995),这在其他SOI技术中很难获得。这使得使用低后门偏置改进的动态V/sub / T控制成为可能。我们在这里报告了深亚微米FD-SOI p- mosfet的最新结果,这些fds -SOI p- mosfet是在完全由ELO创建的两个不同的SOI岛层中制造的。讨论了器件特性和动态V/sub / T/换档。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel 0.7 V two-port 6T SRAM memory cell structure with single-bit-line simultaneous read-and-write access (SBLSRWA) capability using partially-depleted SOI CMOS dynamic-threshold technique Power amplifiers on thin-film-silicon-on-insulator (TFSOI) technology Single chip wireless systems using SOI Buried oxide fringing capacitance: a new physical model and its implication on SOI device scaling and architecture A bandgap circuit operating up to 300/spl deg/C using lateral bipolar transistors in thin-film CMOS-SOI technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1