Sub-Boltzmann transistors with piezoelectric gate barriers

R. Jana, G. Snider, D. Jena
{"title":"Sub-Boltzmann transistors with piezoelectric gate barriers","authors":"R. Jana, G. Snider, D. Jena","doi":"10.1109/E3S.2013.6705877","DOIUrl":null,"url":null,"abstract":"Scaling of field-effect transistors (FETs) is limited by the high power dissipation density, and the resulting heat generation in ICs [1]. This is due to the non-scalability of subthreshold slope (SS), i.e. the gate voltage required to change the drain current by an order of magnitude; the value is limited to SS=kTln(10)~60 mV/dec in a classical Boltzmann FET switch [2-3]. Tunneling FETs are being investigated for sub-Boltzmann switching. But even a conventional FET can potentially achieve sub-Boltzmann switching taking advantage of ferroelectric gates materials [3]. It is possible to amplify the internal channel surface potential, Ψs over the applied gate bias voltage, Vg; using negative differential capacitance (NDC) in the gate insulator. The “body factor” then reduces below unity i.e. m = ∂Vg / ∂Ψs <; 1, and hence the subthreshold slope (SS=m×60 mV/dec) can be lowered below 60 mV/dec. In this work, we show that such internal gain mechanism can also exist in piezoelectric gate materials, such as in AIN/GaN heterostructures.","PeriodicalId":231837,"journal":{"name":"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)","volume":"329 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/E3S.2013.6705877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Scaling of field-effect transistors (FETs) is limited by the high power dissipation density, and the resulting heat generation in ICs [1]. This is due to the non-scalability of subthreshold slope (SS), i.e. the gate voltage required to change the drain current by an order of magnitude; the value is limited to SS=kTln(10)~60 mV/dec in a classical Boltzmann FET switch [2-3]. Tunneling FETs are being investigated for sub-Boltzmann switching. But even a conventional FET can potentially achieve sub-Boltzmann switching taking advantage of ferroelectric gates materials [3]. It is possible to amplify the internal channel surface potential, Ψs over the applied gate bias voltage, Vg; using negative differential capacitance (NDC) in the gate insulator. The “body factor” then reduces below unity i.e. m = ∂Vg / ∂Ψs <; 1, and hence the subthreshold slope (SS=m×60 mV/dec) can be lowered below 60 mV/dec. In this work, we show that such internal gain mechanism can also exist in piezoelectric gate materials, such as in AIN/GaN heterostructures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压电栅极阻挡的亚玻尔兹曼晶体管
场效应晶体管(fet)的缩放受到高功耗密度和ic中产生的热量的限制[1]。这是由于亚阈值斜率(SS)的不可扩展性,即将漏极电流改变一个数量级所需的栅极电压;在经典玻尔兹曼FET开关中,该值被限制在SS=kTln(10)~ 60mv /dec[2-3]。隧道场效应管正在研究亚玻尔兹曼开关。但即使是传统的场效应管也有可能利用铁电栅极材料实现亚玻尔兹曼开关[3]。可以在施加的栅极偏置电压Vg上放大内部通道表面电位Ψs;栅极绝缘子采用负差分电容(NDC)。然后“体因子”降低到单位以下,即m =∂Vg /∂Ψs <;因此,阈下斜率(SS=m×60 mV/dec)可以降低到60 mV/dec以下。在这项工作中,我们表明这种内部增益机制也可以存在于压电栅材料中,例如AIN/GaN异质结构中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Device design considerations for ultra-thin body non-hysteretic negative capacitance FETs Ultra-Low power neuromorphic computing with spin-torque devices Power-efficient server utilization in compute clouds Energy transparency from hardware to software Prospects for high-aspect-ratio FinFETs in low-power logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1