Elephant Herding Optimization (EHO) Based Parameters Estimation of Induction Machine Considering the Nonlinear Core-Loss Model

S. Choudhary, T. Bera
{"title":"Elephant Herding Optimization (EHO) Based Parameters Estimation of Induction Machine Considering the Nonlinear Core-Loss Model","authors":"S. Choudhary, T. Bera","doi":"10.1109/ICCE50343.2020.9290586","DOIUrl":null,"url":null,"abstract":"Estimation of parameters for an induction machine is essential in performance analysis and control scheme design in industrial applications. In this paper, elephant herding optimization (EHO) technique-based parameter estimation technique for an induction motor is studied, and the optimum parameters are obtained using a least mean square technique (LMST). The input impedance is studied at different slip samples and a steady-state model of the squirrel-cage induction machine is developed by incorporating the nonlinear core-loss resistance. The real machine parameters are obtained from the practical experimentation on a squirrel cage induction machine. Real machine parameters are fed to the optimization algorithm as the initial values. By considering the nonlinear core-loss parameter in the equivalent circuit model, the proposed method suggests a more accurate parameter estimation technique. The effectiveness of the proposed EHO-based induction machine parameters optimization techniques is validated by the experimental and simulation results.","PeriodicalId":421963,"journal":{"name":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE50343.2020.9290586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimation of parameters for an induction machine is essential in performance analysis and control scheme design in industrial applications. In this paper, elephant herding optimization (EHO) technique-based parameter estimation technique for an induction motor is studied, and the optimum parameters are obtained using a least mean square technique (LMST). The input impedance is studied at different slip samples and a steady-state model of the squirrel-cage induction machine is developed by incorporating the nonlinear core-loss resistance. The real machine parameters are obtained from the practical experimentation on a squirrel cage induction machine. Real machine parameters are fed to the optimization algorithm as the initial values. By considering the nonlinear core-loss parameter in the equivalent circuit model, the proposed method suggests a more accurate parameter estimation technique. The effectiveness of the proposed EHO-based induction machine parameters optimization techniques is validated by the experimental and simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑非线性磁芯损耗模型的基于象群优化的感应电机参数估计
在工业应用中,感应电机的参数估计在性能分析和控制方案设计中是必不可少的。本文研究了基于象群优化(EHO)技术的异步电动机参数估计技术,并利用最小均方法(LMST)获得了最优参数。研究了不同滑移情况下的输入阻抗,建立了考虑非线性铁心损耗电阻的鼠笼式感应电机稳态模型。在鼠笼式感应电机上进行了实际实验,得到了实际的电机参数。将实际机器参数作为初始值馈入优化算法。该方法考虑了等效电路模型中的非线性铁芯损耗参数,提出了一种更为精确的参数估计技术。实验和仿真结果验证了基于eho的感应电机参数优化技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realization and Implementation of Optical Reversible Universal Quadruple Logic Gate (ORUQLG) Advanced Design of Transmitting Antenna System for Polarization Modulation Design and Development of Solar Power Hybrid Electric Vehicles Charging Station Performance Analysis of Multilingual Encryption for Enhancing Data Security using Cellular Automata based State Transition Mapping: A Linear Approach Online Handwritten Bangla and Devanagari Character Recognition by using CNN: A Deep Learning Concept
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1