S. Verma, G. Bersuker, D. Gilmer, A. Padovani, H. Park, A. Nainani, D. Heh, Jeff Huang, Jack Jiang, K. Parat, P. Kirsch, L. Larcher, H. Tseng, K. Saraswat, R. Jammy
{"title":"A Novel Fluorine Incorporated Band Engineered (BE) Tunnel (SiO2/ HfSiO/ SiO2) TANOS with Excellent Program/Erase & Endurance to 10^5 Cycles","authors":"S. Verma, G. Bersuker, D. Gilmer, A. Padovani, H. Park, A. Nainani, D. Heh, Jeff Huang, Jack Jiang, K. Parat, P. Kirsch, L. Larcher, H. Tseng, K. Saraswat, R. Jammy","doi":"10.1109/IMW.2009.5090575","DOIUrl":null,"url":null,"abstract":"We demonstrate for the first time a fluorine incorporated band- engineered (BE) tunnel oxide (SiO 2 /HfSiO/SiO 2 ) TANOS with excellent program / erase (P/E) characteristics and endurance to 10 5 cycles. Incorporating fluorine in the tunnel dielectric improves Si/SiO 2 interface resulting in excellent endurance of nearly constant over 3 V P/E window for at least 10 5 cycles. Fluorine also reduces interface state generation during retention by ~20%. Furthermore, Fluorine passivates bulk traps leading to as much as ~10times higher charge to breakdown (Q bd ) and ~10-50times lower interface state density (Dit). Fluorine passivation for BE-TANOS is significant because it improves reliability assisting implementation of TANOS flash NVM beyond the 20 nm node.","PeriodicalId":113507,"journal":{"name":"2009 IEEE International Memory Workshop","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Memory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2009.5090575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We demonstrate for the first time a fluorine incorporated band- engineered (BE) tunnel oxide (SiO 2 /HfSiO/SiO 2 ) TANOS with excellent program / erase (P/E) characteristics and endurance to 10 5 cycles. Incorporating fluorine in the tunnel dielectric improves Si/SiO 2 interface resulting in excellent endurance of nearly constant over 3 V P/E window for at least 10 5 cycles. Fluorine also reduces interface state generation during retention by ~20%. Furthermore, Fluorine passivates bulk traps leading to as much as ~10times higher charge to breakdown (Q bd ) and ~10-50times lower interface state density (Dit). Fluorine passivation for BE-TANOS is significant because it improves reliability assisting implementation of TANOS flash NVM beyond the 20 nm node.