John J. Jairo Molina, Kenta Ogawa, Takashi Taniguchi
{"title":"Stokesian Processes : Inferring Stokes Flows using Physics-Informed Gaussian Processes","authors":"John J. Jairo Molina, Kenta Ogawa, Takashi Taniguchi","doi":"10.1088/2632-2153/ad0286","DOIUrl":null,"url":null,"abstract":"Abstract We develop a probabilistic Stokes flow framework, using physics informed Gaussian processes, which can be used to solve both forward/inverse flow problems with missing and/or noisy data. The physics of the problem, specified by the Stokes and continuity equations, is exactly encoded into the inference framework. Crucially, this means that we do not need to explicitly solve the Poisson equation for the pressure field, as a physically meaningful (divergence-free) velocity field will automatically be selected. We test our method on a simple pressure driven flow problem, i.e. flow through a sinusoidal channel, and compare against standard numerical methods (Finite Element and Direct Numerical Simulations). We obtain excellent agreement, even when solving inverse problems given only sub-sampled velocity data on low dimensional sub-spaces (i.e. 1 component of the velocity on 1 D domains to reconstruct 2 D flows). The proposed method will be a valuable tool for analyzing experimental data, where noisy/missing data is the norm.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"53 6","pages":"0"},"PeriodicalIF":6.3000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad0286","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We develop a probabilistic Stokes flow framework, using physics informed Gaussian processes, which can be used to solve both forward/inverse flow problems with missing and/or noisy data. The physics of the problem, specified by the Stokes and continuity equations, is exactly encoded into the inference framework. Crucially, this means that we do not need to explicitly solve the Poisson equation for the pressure field, as a physically meaningful (divergence-free) velocity field will automatically be selected. We test our method on a simple pressure driven flow problem, i.e. flow through a sinusoidal channel, and compare against standard numerical methods (Finite Element and Direct Numerical Simulations). We obtain excellent agreement, even when solving inverse problems given only sub-sampled velocity data on low dimensional sub-spaces (i.e. 1 component of the velocity on 1 D domains to reconstruct 2 D flows). The proposed method will be a valuable tool for analyzing experimental data, where noisy/missing data is the norm.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.