Research on the Influence of Electric Vehicle Integration in Island Microgrid, Vietnam

Nguyen Van Hung, Nguyen Quoc Minh
{"title":"Research on the Influence of Electric Vehicle Integration in Island Microgrid, Vietnam","authors":"Nguyen Van Hung, Nguyen Quoc Minh","doi":"10.35940/ijeat.a4283.1013123","DOIUrl":null,"url":null,"abstract":"Vietnam's economy is developing strongly, and the demand for energy use will increase rapidly. The development of smart grids contributes significantly to the transition and sustainable development of energy from renewable energy sources to improve the quality of the national power supply and promote the sustainable use of electricity economically and efficiently. Thus, this is highly beneficial in reducing carbon emissions and other types of pollution. Besides, electrification in the transportation industry is developing rapidly, such as Electric Vehicles (EVs) and Metros in recent years. Integrating electric vehicles into the grid will enable two-way energy exchange, reactive power compensation and load balancing. However, the number of EVs participating in charging at a time will cause some conflicts, such as voltage and power loss at the nodes. Therefore, the balancing problem between load demand and generation source is a difficult task in planning operations. This paper presents a method to optimize island Microgrid (MG) operation with the participation of electric vehicles based on renewable energy sources. Optimization techniques in intelligent resource forecasting and management algorithms are built in MATLAB to achieve different requirements. The proposed Microgrid manages energy efficiency that adapts to the variability of Renewable Energy with improved efficiency.","PeriodicalId":13981,"journal":{"name":"International Journal of Engineering and Advanced Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Advanced Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijeat.a4283.1013123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Vietnam's economy is developing strongly, and the demand for energy use will increase rapidly. The development of smart grids contributes significantly to the transition and sustainable development of energy from renewable energy sources to improve the quality of the national power supply and promote the sustainable use of electricity economically and efficiently. Thus, this is highly beneficial in reducing carbon emissions and other types of pollution. Besides, electrification in the transportation industry is developing rapidly, such as Electric Vehicles (EVs) and Metros in recent years. Integrating electric vehicles into the grid will enable two-way energy exchange, reactive power compensation and load balancing. However, the number of EVs participating in charging at a time will cause some conflicts, such as voltage and power loss at the nodes. Therefore, the balancing problem between load demand and generation source is a difficult task in planning operations. This paper presents a method to optimize island Microgrid (MG) operation with the participation of electric vehicles based on renewable energy sources. Optimization techniques in intelligent resource forecasting and management algorithms are built in MATLAB to achieve different requirements. The proposed Microgrid manages energy efficiency that adapts to the variability of Renewable Energy with improved efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
越南海岛微电网电动汽车并网影响研究
越南经济发展强劲,对能源的需求将迅速增加。智能电网的发展对可再生能源的转型和可持续发展,提高国家电力供应质量,促进经济高效的可持续用电具有重要意义。因此,这对减少碳排放和其他类型的污染非常有益。此外,交通运输行业的电气化发展迅速,例如近年来的电动汽车和地铁。将电动汽车并入电网将实现双向能量交换、无功补偿和负载平衡。然而,同时参与充电的电动汽车数量会产生一些冲突,如节点上的电压和功率损失。因此,负荷需求与发电源之间的平衡问题是规划运行中的难题。提出了一种基于可再生能源的电动汽车参与的海岛微电网运行优化方法。在MATLAB中构建了智能资源预测和管理算法的优化技术,以实现不同的需求。提出的微电网管理能源效率,以提高效率适应可再生能源的可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Car Door Sound Quality Assessment - A Review for NVH Performance Research Airport Runway Crack Detection to Classify and Densify Surface Crack Type Computer-Aided Diagnosis System for Automated Detection of Mri Brain Tumors Smart Artificial Intelligence System for Heart Disease Prediction A Comprehensive Study on Failure Modes and Mechanisms of Thin Film Chip Resistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1