A 2.4-GHz Wideband Wireless Harvester With Integrated Autonomous RF Input-Frequency Tracking for FCC-Compatible Chip-Scale Battery Charging

Kamala Raghavan Sadagopan;Arun Natarajan
{"title":"A 2.4-GHz Wideband Wireless Harvester With Integrated Autonomous RF Input-Frequency Tracking for FCC-Compatible Chip-Scale Battery Charging","authors":"Kamala Raghavan Sadagopan;Arun Natarajan","doi":"10.1109/OJSSCS.2023.3323913","DOIUrl":null,"url":null,"abstract":"RF-powered Internet of Things (IoT) sensor duty cycles are limited due to low available energy at long range in the absence of a battery. Additionally, RF energy harvesters with high-\n<inline-formula> <tex-math>$Q$ </tex-math></inline-formula>\n interfaces between the antenna and rectifier suffer from poor sensitivity for RF input frequencies outside their narrow bandwidth. In this article, we address these challenges and present a channel-agnostic far-field 2.4-GHz energy harvester achieving: 1) dynamic RF input frequency tracking for wideband sensitivity; 2) FCC-compatible frequency-hopped input harvesting; and 3) optimal battery charging capability for powering energy-constrained IoT applications. An enhanced antenna-rectifier interface is designed with 2-dB better stand-alone sensitivity and \n<inline-formula> <tex-math>$5\\times $ </tex-math></inline-formula>\n lower leakage using a bulk-connected rectifier. Input frequency tracking is achieved over 15-MHz bandwidth using a fast-settling auto-zeroing amplifier that senses the rectifier’s first-stage output. Chip-scale pulsed battery charging is achieved from cold-start over \n<inline-formula> <tex-math>$10\\times $ </tex-math></inline-formula>\n RF available power ranging from −27 to −17 dBm with > 22% efficiency across the entire range. State-of-the-art battery charging is achieved at −21.5-dBm incident power and 4.18% duty cycled (1-h-per-day charging) FCC-compliant frequency-hopped RF input assuming a steady-state 100-nA load. The compact harvester IC occupies 2 mm2 in a 65-nm CMOS technology and the antenna and IC integrated together in a chip-on-board approach occupy 2.125 cm2 of PCB area.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"249-261"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10278207","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10278207/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

RF-powered Internet of Things (IoT) sensor duty cycles are limited due to low available energy at long range in the absence of a battery. Additionally, RF energy harvesters with high- $Q$ interfaces between the antenna and rectifier suffer from poor sensitivity for RF input frequencies outside their narrow bandwidth. In this article, we address these challenges and present a channel-agnostic far-field 2.4-GHz energy harvester achieving: 1) dynamic RF input frequency tracking for wideband sensitivity; 2) FCC-compatible frequency-hopped input harvesting; and 3) optimal battery charging capability for powering energy-constrained IoT applications. An enhanced antenna-rectifier interface is designed with 2-dB better stand-alone sensitivity and $5\times $ lower leakage using a bulk-connected rectifier. Input frequency tracking is achieved over 15-MHz bandwidth using a fast-settling auto-zeroing amplifier that senses the rectifier’s first-stage output. Chip-scale pulsed battery charging is achieved from cold-start over $10\times $ RF available power ranging from −27 to −17 dBm with > 22% efficiency across the entire range. State-of-the-art battery charging is achieved at −21.5-dBm incident power and 4.18% duty cycled (1-h-per-day charging) FCC-compliant frequency-hopped RF input assuming a steady-state 100-nA load. The compact harvester IC occupies 2 mm2 in a 65-nm CMOS technology and the antenna and IC integrated together in a chip-on-board approach occupy 2.125 cm2 of PCB area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成自主射频输入频率跟踪功能的 2.4 GHz 宽带无线采集器,用于 FCC 兼容芯片级电池充电
射频供电的物联网(IoT)传感器工作周期有限,原因是在没有电池的情况下,远距离可用能量较低。此外,天线和整流器之间具有高 Q 值接口的射频能量收集器对其狭窄带宽之外的射频输入频率灵敏度较低。在这篇文章中,我们针对这些挑战,提出了一种信道无关的远场 2.4 GHz 能量收集器,可实现以下功能1) 动态射频输入频率跟踪,实现宽带灵敏度;2) 兼容 FCC 跳频输入采集;3) 最佳电池充电能力,为能源受限的物联网应用供电。设计的增强型天线整流器接口使用批量连接的整流器,独立灵敏度提高了 2 分贝,漏电降低了 5 美元/次。利用感应整流器第一级输出的快速沉淀自动归零放大器,在 15-MHz 带宽内实现了输入频率跟踪。芯片级脉冲电池充电实现了从冷启动到超过 $10/times 的射频可用功率范围为 -27 至 -17 dBm,整个范围内的效率大于 22%。在-21.5dBm入射功率和4.18%占空比(每天充电1小时)符合FCC标准的跳频射频输入(假设稳态100-nA负载)条件下,可实现最先进的电池充电。紧凑型收割机集成电路采用 65 纳米 CMOS 技术,占地面积为 2 平方毫米,天线和集成电路以芯片板载方式集成在一起,占地面积为 2.125 平方厘米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Problem of Spurious Emissions in 5G FR2 Phased Arrays, and a Solution Based on an Upmixer With Embedded LO Leakage Cancellation SAR-Assisted Energy-Efficient Hybrid ADCs Systematic Equation-Based Design of a 10-Bit, 500-MS/s Single-Channel SAR A/D Converter With 2-GHz Resolution Bandwidth Digital Phase-Locked Loops: Exploring Different Boundaries 8-Shaped Inductors: An Essential Addition to RFIC Designers’ Toolbox
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1