{"title":"A 2.4-GHz Wideband Wireless Harvester With Integrated Autonomous RF Input-Frequency Tracking for FCC-Compatible Chip-Scale Battery Charging","authors":"Kamala Raghavan Sadagopan;Arun Natarajan","doi":"10.1109/OJSSCS.2023.3323913","DOIUrl":null,"url":null,"abstract":"RF-powered Internet of Things (IoT) sensor duty cycles are limited due to low available energy at long range in the absence of a battery. Additionally, RF energy harvesters with high-\n<inline-formula> <tex-math>$Q$ </tex-math></inline-formula>\n interfaces between the antenna and rectifier suffer from poor sensitivity for RF input frequencies outside their narrow bandwidth. In this article, we address these challenges and present a channel-agnostic far-field 2.4-GHz energy harvester achieving: 1) dynamic RF input frequency tracking for wideband sensitivity; 2) FCC-compatible frequency-hopped input harvesting; and 3) optimal battery charging capability for powering energy-constrained IoT applications. An enhanced antenna-rectifier interface is designed with 2-dB better stand-alone sensitivity and \n<inline-formula> <tex-math>$5\\times $ </tex-math></inline-formula>\n lower leakage using a bulk-connected rectifier. Input frequency tracking is achieved over 15-MHz bandwidth using a fast-settling auto-zeroing amplifier that senses the rectifier’s first-stage output. Chip-scale pulsed battery charging is achieved from cold-start over \n<inline-formula> <tex-math>$10\\times $ </tex-math></inline-formula>\n RF available power ranging from −27 to −17 dBm with > 22% efficiency across the entire range. State-of-the-art battery charging is achieved at −21.5-dBm incident power and 4.18% duty cycled (1-h-per-day charging) FCC-compliant frequency-hopped RF input assuming a steady-state 100-nA load. The compact harvester IC occupies 2 mm2 in a 65-nm CMOS technology and the antenna and IC integrated together in a chip-on-board approach occupy 2.125 cm2 of PCB area.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"249-261"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10278207","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10278207/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
RF-powered Internet of Things (IoT) sensor duty cycles are limited due to low available energy at long range in the absence of a battery. Additionally, RF energy harvesters with high-
$Q$
interfaces between the antenna and rectifier suffer from poor sensitivity for RF input frequencies outside their narrow bandwidth. In this article, we address these challenges and present a channel-agnostic far-field 2.4-GHz energy harvester achieving: 1) dynamic RF input frequency tracking for wideband sensitivity; 2) FCC-compatible frequency-hopped input harvesting; and 3) optimal battery charging capability for powering energy-constrained IoT applications. An enhanced antenna-rectifier interface is designed with 2-dB better stand-alone sensitivity and
$5\times $
lower leakage using a bulk-connected rectifier. Input frequency tracking is achieved over 15-MHz bandwidth using a fast-settling auto-zeroing amplifier that senses the rectifier’s first-stage output. Chip-scale pulsed battery charging is achieved from cold-start over
$10\times $
RF available power ranging from −27 to −17 dBm with > 22% efficiency across the entire range. State-of-the-art battery charging is achieved at −21.5-dBm incident power and 4.18% duty cycled (1-h-per-day charging) FCC-compliant frequency-hopped RF input assuming a steady-state 100-nA load. The compact harvester IC occupies 2 mm2 in a 65-nm CMOS technology and the antenna and IC integrated together in a chip-on-board approach occupy 2.125 cm2 of PCB area.