Penerapan Metode K-Means dalam Klasterisasi Status Desa terhadap Keluarga Beresiko Stunting

None Dayla May Cytry, Sarjon Defit, Gunadi Nurcahyo
{"title":"Penerapan Metode K-Means dalam Klasterisasi Status Desa terhadap Keluarga Beresiko Stunting","authors":"None Dayla May Cytry, Sarjon Defit, Gunadi Nurcahyo","doi":"10.35134/komtekinfo.v10i3.423","DOIUrl":null,"url":null,"abstract":"The Indonesian government issued Presidential Regulation of the Republic of Indonesia Number 72 of 2021 concerning the acceleration of stunting reduction with a prevalence target of 14% by 2024. Stunting has now become a national issue and is of particular concern to the government to overcome the risks it poses. One action that can be taken to prevent stunting is to provide intervention to families at risk of stunting. This intervention is carried out in the form of clustering of sub-districts or villages consisting of babies under two years (baduta), babies under five years (toddlers), and pregnant women with inadequate environmental aspects (sanitation and clean water). Based on this, this research aims to conduct a cluster analysis of sub-districts or villages that are at risk of stunting. The cluster analysis method uses the K-Mean algorithm with reference to 3 clusters, namely low, medium, and high. This research uses a dataset of 71 sub-districts or villages that are at risk of stunting. The research results show that the performance of the K-Means method in cluster analysis produces 32 low-risk sub-districts or villages, with a percentage of 45.07%, 36 medium risks with a percentage of 50.70%, and 3 high risk with a percentage of 4. 23%. Based on these results, this research can contribute to the relevant government in dealing with the spread of stunting","PeriodicalId":496164,"journal":{"name":"Jurnal komtekInfo","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal komtekInfo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35134/komtekinfo.v10i3.423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Indonesian government issued Presidential Regulation of the Republic of Indonesia Number 72 of 2021 concerning the acceleration of stunting reduction with a prevalence target of 14% by 2024. Stunting has now become a national issue and is of particular concern to the government to overcome the risks it poses. One action that can be taken to prevent stunting is to provide intervention to families at risk of stunting. This intervention is carried out in the form of clustering of sub-districts or villages consisting of babies under two years (baduta), babies under five years (toddlers), and pregnant women with inadequate environmental aspects (sanitation and clean water). Based on this, this research aims to conduct a cluster analysis of sub-districts or villages that are at risk of stunting. The cluster analysis method uses the K-Mean algorithm with reference to 3 clusters, namely low, medium, and high. This research uses a dataset of 71 sub-districts or villages that are at risk of stunting. The research results show that the performance of the K-Means method in cluster analysis produces 32 low-risk sub-districts or villages, with a percentage of 45.07%, 36 medium risks with a percentage of 50.70%, and 3 high risk with a percentage of 4. 23%. Based on these results, this research can contribute to the relevant government in dealing with the spread of stunting
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从何而来?从何而来
印度尼西亚政府发布了2021年第72号印度尼西亚共和国总统条例,该条例涉及加快减少发育迟缓,到2024年将患病率降低14%的目标。发育迟缓现在已经成为一个全国性的问题,是政府特别关注的问题,以克服它带来的风险。预防发育迟缓可采取的一项行动是向有发育迟缓风险的家庭提供干预。这一干预措施以街道或村庄集群的形式进行,由两岁以下的婴儿(baduta)、五岁以下的婴儿(幼儿)和环境条件(卫生设施和清洁水)不足的孕妇组成。在此基础上,本研究旨在对存在发育迟缓风险的街道或村庄进行聚类分析。聚类分析方法采用K-Mean算法,参考低、中、高3个聚类。这项研究使用了71个面临发育迟缓风险的街道或村庄的数据集。研究结果表明,聚类分析中K-Means方法的表现产生了32个低风险街道或村庄,占45.07%,36个中等风险街道或村庄,占50.70%,3个高风险街道或村庄,占4%。23%。基于这些结果,本研究可以为相关政府应对发育迟缓的蔓延提供帮助
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rekomendasi Penerima Remisi Menggunakan Metode AHP dan TOPSIS pada Lapas IIB Solok Penerapan Metode K-Means dalam Klasterisasi Status Desa terhadap Keluarga Beresiko Stunting IMPLEMENTASI METODE AHP DAN MAUT UNTUK REKOMENDASI PRODUK TUPPERWARE TERLARIS Analisis Data Mining Menggunakan Algoritma C4.5 Untuk Prediksi Harga Pasar Mobil Bekas Perbandingan Tingkat Akurasi SAW-TOPSIS dalam Penilaian Kelayakan Proposal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1