Maria Pierdomenico , Loretta Bacchetta , Barbara Benassi
{"title":"The ethanolic extract of Corylus avellana L. drives a microRNA-based cytotoxic effect on HepG2 hepatocarcinoma cells","authors":"Maria Pierdomenico , Loretta Bacchetta , Barbara Benassi","doi":"10.1080/14786419.2023.2287170","DOIUrl":null,"url":null,"abstract":"<div><div>An ethanolic extract of <em>Corylus avellana L.</em> hazelnut was characterised by liquid chromatography coupled to high resolution mass spectrometry. We here evaluated the <em>in vitro</em> cytotoxic response to such extract in HepG2 cells and tried to depict the underlying mechanism(s) in terms of microRNA-34b/c involvement. Following long-term exposure (144h) of HepG2 cells with 0.04-0.4 mg/ml of hazelnut extract, we demonstrated that miR-34 precursor RNA and both mature miR-34b and miR-34c molecules underwent a significant stimulation (>2-fold change, <em>p</em> < 0.05) in cells treated with the highest concentration. The epigenetic modulation was accompanied by the inhibition of cell proliferation, the decrease of viability and activation of apoptosis at 144h of treatment with 0.4 mg/ml of hazelnut.These <em>in vitro</em> findings demonstrate the cytotoxic effect of the <em>C. avellana</em> extract in HepG2 cells and open the way to <em>in vivo</em> validation of possible application of hazelnut-based extracts, and/or its metabolites, as promising epigenetics drugs.</div></div>","PeriodicalId":18990,"journal":{"name":"Natural Product Research","volume":"39 4","pages":"Pages 674-681"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S147864192302301X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
An ethanolic extract of Corylus avellana L. hazelnut was characterised by liquid chromatography coupled to high resolution mass spectrometry. We here evaluated the in vitro cytotoxic response to such extract in HepG2 cells and tried to depict the underlying mechanism(s) in terms of microRNA-34b/c involvement. Following long-term exposure (144h) of HepG2 cells with 0.04-0.4 mg/ml of hazelnut extract, we demonstrated that miR-34 precursor RNA and both mature miR-34b and miR-34c molecules underwent a significant stimulation (>2-fold change, p < 0.05) in cells treated with the highest concentration. The epigenetic modulation was accompanied by the inhibition of cell proliferation, the decrease of viability and activation of apoptosis at 144h of treatment with 0.4 mg/ml of hazelnut.These in vitro findings demonstrate the cytotoxic effect of the C. avellana extract in HepG2 cells and open the way to in vivo validation of possible application of hazelnut-based extracts, and/or its metabolites, as promising epigenetics drugs.
期刊介绍:
The aim of Natural Product Research is to publish important contributions in the field of natural product chemistry. The journal covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds.
The communications include coverage of work on natural substances of land and sea and of plants, microbes and animals. Discussions of structure elucidation, synthesis and experimental biosynthesis of natural products as well as developments of methods in these areas are welcomed in the journal. Finally, research papers in fields on the chemistry-biology boundary, eg. fermentation chemistry, plant tissue culture investigations etc., are accepted into the journal.
Natural Product Research issues will be subtitled either ""Part A - Synthesis and Structure"" or ""Part B - Bioactive Natural Products"". for details on this , see the forthcoming articles section.
All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.