Cross-Attention for Improved Motion Correction in Brain PET.

Zhuotong Cai, Tianyi Zeng, Eléonore V Lieffrig, Jiazhen Zhang, Fuyao Chen, Takuya Toyonaga, Chenyu You, Jingmin Xin, Nanning Zheng, Yihuan Lu, James S Duncan, John A Onofrey
{"title":"Cross-Attention for Improved Motion Correction in Brain PET.","authors":"Zhuotong Cai, Tianyi Zeng, Eléonore V Lieffrig, Jiazhen Zhang, Fuyao Chen, Takuya Toyonaga, Chenyu You, Jingmin Xin, Nanning Zheng, Yihuan Lu, James S Duncan, John A Onofrey","doi":"10.1007/978-3-031-44858-4_4","DOIUrl":null,"url":null,"abstract":"<p><p>Head movement during long scan sessions degrades the quality of reconstruction in positron emission tomography (PET) and introduces artifacts, which limits clinical diagnosis and treatment. Recent deep learning-based motion correction work utilized raw PET list-mode data and hardware motion tracking (HMT) to learn head motion in a supervised manner. However, motion prediction results were not robust to testing subjects outside the training data domain. In this paper, we integrate a cross-attention mechanism into the supervised deep learning network to improve motion correction across test subjects. Specifically, cross-attention learns the spatial correspondence between the reference images and moving images to explicitly focus the model on the most correlative inherent information - the head region the motion correction. We validate our approach on brain PET data from two different scanners: HRRT without time of flight (ToF) and mCT with ToF. Compared with traditional and deep learning benchmarks, our network improved the performance of motion correction by 58% and 26% in translation and rotation, respectively, in multi-subject testing in HRRT studies. In mCT studies, our approach improved performance by 66% and 64% for translation and rotation, respectively. Our results demonstrate that cross-attention has the potential to improve the quality of brain PET image reconstruction without the dependence on HMT. All code will be released on GitHub: https://github.com/OnofreyLab/dl_hmc_attention_mlcn2023.</p>","PeriodicalId":510900,"journal":{"name":"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)","volume":"14312 ","pages":"34-45"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758996/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-44858-4_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Head movement during long scan sessions degrades the quality of reconstruction in positron emission tomography (PET) and introduces artifacts, which limits clinical diagnosis and treatment. Recent deep learning-based motion correction work utilized raw PET list-mode data and hardware motion tracking (HMT) to learn head motion in a supervised manner. However, motion prediction results were not robust to testing subjects outside the training data domain. In this paper, we integrate a cross-attention mechanism into the supervised deep learning network to improve motion correction across test subjects. Specifically, cross-attention learns the spatial correspondence between the reference images and moving images to explicitly focus the model on the most correlative inherent information - the head region the motion correction. We validate our approach on brain PET data from two different scanners: HRRT without time of flight (ToF) and mCT with ToF. Compared with traditional and deep learning benchmarks, our network improved the performance of motion correction by 58% and 26% in translation and rotation, respectively, in multi-subject testing in HRRT studies. In mCT studies, our approach improved performance by 66% and 64% for translation and rotation, respectively. Our results demonstrate that cross-attention has the potential to improve the quality of brain PET image reconstruction without the dependence on HMT. All code will be released on GitHub: https://github.com/OnofreyLab/dl_hmc_attention_mlcn2023.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进脑 PET 运动校正的交叉注意力。
长时间扫描过程中的头部运动会降低正电子发射计算机断层扫描(PET)的重建质量并产生伪影,从而限制临床诊断和治疗。最近基于深度学习的运动校正工作利用原始 PET 列表模式数据和硬件运动跟踪(HMT),以监督方式学习头部运动。然而,运动预测结果对训练数据域外的测试对象并不稳定。在本文中,我们将交叉注意机制整合到监督深度学习网络中,以改善跨测试对象的运动校正。具体来说,交叉注意学习参考图像和运动图像之间的空间对应关系,明确地将模型聚焦于最相关的固有信息--运动校正的头部区域。我们在两种不同扫描仪的脑 PET 数据上验证了我们的方法:不带飞行时间(ToF)的 HRRT 和带 ToF 的 mCT。与传统基准和深度学习基准相比,在 HRRT 研究的多受试者测试中,我们的网络在平移和旋转方面的运动校正性能分别提高了 58% 和 26%。在 mCT 研究中,我们的方法在平移和旋转方面的性能分别提高了 66% 和 64%。我们的研究结果表明,交叉注意有可能在不依赖 HMT 的情况下提高脑 PET 图像重建的质量。所有代码将在 GitHub 上发布:https://github.com/OnofreyLab/dl_hmc_attention_mlcn2023。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-Attention for Improved Motion Correction in Brain PET. Copy Number Variation Informs fMRI-based Prediction of Autism Spectrum Disorder. Learning Sequential Information in Task-based fMRI for Synthetic Data Augmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1