Learning Sequential Information in Task-based fMRI for Synthetic Data Augmentation.

Jiyao Wang, Nicha C Dvornek, Lawrence H Staib, James S Duncan
{"title":"Learning Sequential Information in Task-based fMRI for Synthetic Data Augmentation.","authors":"Jiyao Wang, Nicha C Dvornek, Lawrence H Staib, James S Duncan","doi":"10.1007/978-3-031-44858-4_8","DOIUrl":null,"url":null,"abstract":"<p><p>Insufficiency of training data is a persistent issue in medical image analysis, especially for task-based functional magnetic resonance images (fMRI) with spatio-temporal imaging data acquired using specific cognitive tasks. In this paper, we propose an approach for generating synthetic fMRI sequences that can then be used to create augmented training datasets in downstream learning tasks. To synthesize high-resolution task-specific fMRI, we adapt the <i>α</i>-GAN structure, leveraging advantages of both GAN and variational autoencoder models, and propose different alternatives in aggregating temporal information. The synthetic images are evaluated from multiple perspectives including visualizations and an autism spectrum disorder (ASD) classification task. The results show that the synthetic task-based fMRI can provide effective data augmentation in learning the ASD classification task.</p>","PeriodicalId":510900,"journal":{"name":"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)","volume":"14312 ","pages":"79-88"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395879/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-44858-4_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Insufficiency of training data is a persistent issue in medical image analysis, especially for task-based functional magnetic resonance images (fMRI) with spatio-temporal imaging data acquired using specific cognitive tasks. In this paper, we propose an approach for generating synthetic fMRI sequences that can then be used to create augmented training datasets in downstream learning tasks. To synthesize high-resolution task-specific fMRI, we adapt the α-GAN structure, leveraging advantages of both GAN and variational autoencoder models, and propose different alternatives in aggregating temporal information. The synthetic images are evaluated from multiple perspectives including visualizations and an autism spectrum disorder (ASD) classification task. The results show that the synthetic task-based fMRI can provide effective data augmentation in learning the ASD classification task.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在基于任务的 fMRI 中学习序列信息,以实现合成数据增强。
训练数据不足是医学图像分析中一个长期存在的问题,尤其是对于基于任务的功能磁共振图像(fMRI),其时空成像数据是通过特定认知任务获取的。在本文中,我们提出了一种生成合成 fMRI 序列的方法,这些序列可用于在下游学习任务中创建增强训练数据集。为了合成高分辨率的特定任务 fMRI,我们调整了 α-GAN 结构,充分利用了 GAN 和变异自动编码器模型的优势,并提出了聚合时间信息的不同替代方案。我们从可视化和自闭症谱系障碍(ASD)分类任务等多个角度对合成图像进行了评估。结果表明,基于合成任务的 fMRI 可以为学习 ASD 分类任务提供有效的数据增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-Attention for Improved Motion Correction in Brain PET. Copy Number Variation Informs fMRI-based Prediction of Autism Spectrum Disorder. Learning Sequential Information in Task-based fMRI for Synthetic Data Augmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1