Copy Number Variation Informs fMRI-based Prediction of Autism Spectrum Disorder.

Nicha C Dvornek, Catherine Sullivan, James S Duncan, Abha R Gupta
{"title":"Copy Number Variation Informs fMRI-based Prediction of Autism Spectrum Disorder.","authors":"Nicha C Dvornek, Catherine Sullivan, James S Duncan, Abha R Gupta","doi":"10.1007/978-3-031-44858-4_13","DOIUrl":null,"url":null,"abstract":"<p><p>The multifactorial etiology of autism spectrum disorder (ASD) suggests that its study would benefit greatly from multimodal approaches that combine data from widely varying platforms, e.g., neuroimaging, genetics, and clinical characterization. Prior neuroimaging-genetic analyses often apply naive feature concatenation approaches in data-driven work or use the findings from one modality to guide posthoc analysis of another, missing the opportunity to analyze the paired multimodal data in a truly unified approach. In this paper, we develop a more integrative model for combining genetic, demographic, and neuroimaging data. Inspired by the influence of genotype on phenotype, we propose using an attention-based approach where the genetic data guides attention to neuroimaging features of importance for model prediction. The genetic data is derived from copy number variation parameters, while the neuroimaging data is from functional magnetic resonance imaging. We evaluate the proposed approach on ASD classification and severity prediction tasks, using a sex-balanced dataset of 228 ASD and typically developing subjects in a 10-fold cross-validation framework. We demonstrate that our attention-based model combining genetic information, demographic data, and functional magnetic resonance imaging results in superior prediction performance compared to other multimodal approaches.</p>","PeriodicalId":510900,"journal":{"name":"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)","volume":"14312 ","pages":"133-142"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-44858-4_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The multifactorial etiology of autism spectrum disorder (ASD) suggests that its study would benefit greatly from multimodal approaches that combine data from widely varying platforms, e.g., neuroimaging, genetics, and clinical characterization. Prior neuroimaging-genetic analyses often apply naive feature concatenation approaches in data-driven work or use the findings from one modality to guide posthoc analysis of another, missing the opportunity to analyze the paired multimodal data in a truly unified approach. In this paper, we develop a more integrative model for combining genetic, demographic, and neuroimaging data. Inspired by the influence of genotype on phenotype, we propose using an attention-based approach where the genetic data guides attention to neuroimaging features of importance for model prediction. The genetic data is derived from copy number variation parameters, while the neuroimaging data is from functional magnetic resonance imaging. We evaluate the proposed approach on ASD classification and severity prediction tasks, using a sex-balanced dataset of 228 ASD and typically developing subjects in a 10-fold cross-validation framework. We demonstrate that our attention-based model combining genetic information, demographic data, and functional magnetic resonance imaging results in superior prediction performance compared to other multimodal approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拷贝数变异为基于 fMRI 的自闭症谱系障碍预测提供依据。
自闭症谱系障碍(ASD)的多因素病因表明,将神经影像学、遗传学和临床特征描述等不同平台的数据结合起来的多模态方法将使自闭症谱系障碍的研究受益匪浅。之前的神经影像-遗传学分析通常在数据驱动的工作中采用天真的特征串联方法,或使用一种模式的研究结果来指导另一种模式的事后分析,从而错失了以真正统一的方法分析配对的多模式数据的机会。在本文中,我们开发了一种更具综合性的模型,用于结合基因、人口统计学和神经影像学数据。受基因型对表型影响的启发,我们提出了一种基于注意力的方法,即由基因数据引导人们注意神经影像特征对模型预测的重要性。遗传数据来自拷贝数变异参数,而神经影像数据来自功能磁共振成像。我们在 10 倍交叉验证框架下,使用一个包含 228 名 ASD 和典型发育受试者的性别平衡数据集,在 ASD 分类和严重程度预测任务中对所提出的方法进行了评估。我们证明,与其他多模态方法相比,我们基于注意力的模型结合了遗传信息、人口统计学数据和功能性磁共振成像,具有更优越的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-Attention for Improved Motion Correction in Brain PET. Copy Number Variation Informs fMRI-based Prediction of Autism Spectrum Disorder. Learning Sequential Information in Task-based fMRI for Synthetic Data Augmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1