首页 > 最新文献

Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)最新文献

英文 中文
Cross-Attention for Improved Motion Correction in Brain PET. 改进脑 PET 运动校正的交叉注意力。
Zhuotong Cai, Tianyi Zeng, Eléonore V Lieffrig, Jiazhen Zhang, Fuyao Chen, Takuya Toyonaga, Chenyu You, Jingmin Xin, Nanning Zheng, Yihuan Lu, James S Duncan, John A Onofrey

Head movement during long scan sessions degrades the quality of reconstruction in positron emission tomography (PET) and introduces artifacts, which limits clinical diagnosis and treatment. Recent deep learning-based motion correction work utilized raw PET list-mode data and hardware motion tracking (HMT) to learn head motion in a supervised manner. However, motion prediction results were not robust to testing subjects outside the training data domain. In this paper, we integrate a cross-attention mechanism into the supervised deep learning network to improve motion correction across test subjects. Specifically, cross-attention learns the spatial correspondence between the reference images and moving images to explicitly focus the model on the most correlative inherent information - the head region the motion correction. We validate our approach on brain PET data from two different scanners: HRRT without time of flight (ToF) and mCT with ToF. Compared with traditional and deep learning benchmarks, our network improved the performance of motion correction by 58% and 26% in translation and rotation, respectively, in multi-subject testing in HRRT studies. In mCT studies, our approach improved performance by 66% and 64% for translation and rotation, respectively. Our results demonstrate that cross-attention has the potential to improve the quality of brain PET image reconstruction without the dependence on HMT. All code will be released on GitHub: https://github.com/OnofreyLab/dl_hmc_attention_mlcn2023.

长时间扫描过程中的头部运动会降低正电子发射计算机断层扫描(PET)的重建质量并产生伪影,从而限制临床诊断和治疗。最近基于深度学习的运动校正工作利用原始 PET 列表模式数据和硬件运动跟踪(HMT),以监督方式学习头部运动。然而,运动预测结果对训练数据域外的测试对象并不稳定。在本文中,我们将交叉注意机制整合到监督深度学习网络中,以改善跨测试对象的运动校正。具体来说,交叉注意学习参考图像和运动图像之间的空间对应关系,明确地将模型聚焦于最相关的固有信息--运动校正的头部区域。我们在两种不同扫描仪的脑 PET 数据上验证了我们的方法:不带飞行时间(ToF)的 HRRT 和带 ToF 的 mCT。与传统基准和深度学习基准相比,在 HRRT 研究的多受试者测试中,我们的网络在平移和旋转方面的运动校正性能分别提高了 58% 和 26%。在 mCT 研究中,我们的方法在平移和旋转方面的性能分别提高了 66% 和 64%。我们的研究结果表明,交叉注意有可能在不依赖 HMT 的情况下提高脑 PET 图像重建的质量。所有代码将在 GitHub 上发布:https://github.com/OnofreyLab/dl_hmc_attention_mlcn2023。
{"title":"Cross-Attention for Improved Motion Correction in Brain PET.","authors":"Zhuotong Cai, Tianyi Zeng, Eléonore V Lieffrig, Jiazhen Zhang, Fuyao Chen, Takuya Toyonaga, Chenyu You, Jingmin Xin, Nanning Zheng, Yihuan Lu, James S Duncan, John A Onofrey","doi":"10.1007/978-3-031-44858-4_4","DOIUrl":"10.1007/978-3-031-44858-4_4","url":null,"abstract":"<p><p>Head movement during long scan sessions degrades the quality of reconstruction in positron emission tomography (PET) and introduces artifacts, which limits clinical diagnosis and treatment. Recent deep learning-based motion correction work utilized raw PET list-mode data and hardware motion tracking (HMT) to learn head motion in a supervised manner. However, motion prediction results were not robust to testing subjects outside the training data domain. In this paper, we integrate a cross-attention mechanism into the supervised deep learning network to improve motion correction across test subjects. Specifically, cross-attention learns the spatial correspondence between the reference images and moving images to explicitly focus the model on the most correlative inherent information - the head region the motion correction. We validate our approach on brain PET data from two different scanners: HRRT without time of flight (ToF) and mCT with ToF. Compared with traditional and deep learning benchmarks, our network improved the performance of motion correction by 58% and 26% in translation and rotation, respectively, in multi-subject testing in HRRT studies. In mCT studies, our approach improved performance by 66% and 64% for translation and rotation, respectively. Our results demonstrate that cross-attention has the potential to improve the quality of brain PET image reconstruction without the dependence on HMT. All code will be released on GitHub: https://github.com/OnofreyLab/dl_hmc_attention_mlcn2023.</p>","PeriodicalId":510900,"journal":{"name":"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)","volume":"14312 ","pages":"34-45"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758996/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copy Number Variation Informs fMRI-based Prediction of Autism Spectrum Disorder. 拷贝数变异为基于 fMRI 的自闭症谱系障碍预测提供依据。
Nicha C Dvornek, Catherine Sullivan, James S Duncan, Abha R Gupta

The multifactorial etiology of autism spectrum disorder (ASD) suggests that its study would benefit greatly from multimodal approaches that combine data from widely varying platforms, e.g., neuroimaging, genetics, and clinical characterization. Prior neuroimaging-genetic analyses often apply naive feature concatenation approaches in data-driven work or use the findings from one modality to guide posthoc analysis of another, missing the opportunity to analyze the paired multimodal data in a truly unified approach. In this paper, we develop a more integrative model for combining genetic, demographic, and neuroimaging data. Inspired by the influence of genotype on phenotype, we propose using an attention-based approach where the genetic data guides attention to neuroimaging features of importance for model prediction. The genetic data is derived from copy number variation parameters, while the neuroimaging data is from functional magnetic resonance imaging. We evaluate the proposed approach on ASD classification and severity prediction tasks, using a sex-balanced dataset of 228 ASD and typically developing subjects in a 10-fold cross-validation framework. We demonstrate that our attention-based model combining genetic information, demographic data, and functional magnetic resonance imaging results in superior prediction performance compared to other multimodal approaches.

自闭症谱系障碍(ASD)的多因素病因表明,将神经影像学、遗传学和临床特征描述等不同平台的数据结合起来的多模态方法将使自闭症谱系障碍的研究受益匪浅。之前的神经影像-遗传学分析通常在数据驱动的工作中采用天真的特征串联方法,或使用一种模式的研究结果来指导另一种模式的事后分析,从而错失了以真正统一的方法分析配对的多模式数据的机会。在本文中,我们开发了一种更具综合性的模型,用于结合基因、人口统计学和神经影像学数据。受基因型对表型影响的启发,我们提出了一种基于注意力的方法,即由基因数据引导人们注意神经影像特征对模型预测的重要性。遗传数据来自拷贝数变异参数,而神经影像数据来自功能磁共振成像。我们在 10 倍交叉验证框架下,使用一个包含 228 名 ASD 和典型发育受试者的性别平衡数据集,在 ASD 分类和严重程度预测任务中对所提出的方法进行了评估。我们证明,与其他多模态方法相比,我们基于注意力的模型结合了遗传信息、人口统计学数据和功能性磁共振成像,具有更优越的预测性能。
{"title":"Copy Number Variation Informs fMRI-based Prediction of Autism Spectrum Disorder.","authors":"Nicha C Dvornek, Catherine Sullivan, James S Duncan, Abha R Gupta","doi":"10.1007/978-3-031-44858-4_13","DOIUrl":"10.1007/978-3-031-44858-4_13","url":null,"abstract":"<p><p>The multifactorial etiology of autism spectrum disorder (ASD) suggests that its study would benefit greatly from multimodal approaches that combine data from widely varying platforms, e.g., neuroimaging, genetics, and clinical characterization. Prior neuroimaging-genetic analyses often apply naive feature concatenation approaches in data-driven work or use the findings from one modality to guide posthoc analysis of another, missing the opportunity to analyze the paired multimodal data in a truly unified approach. In this paper, we develop a more integrative model for combining genetic, demographic, and neuroimaging data. Inspired by the influence of genotype on phenotype, we propose using an attention-based approach where the genetic data guides attention to neuroimaging features of importance for model prediction. The genetic data is derived from copy number variation parameters, while the neuroimaging data is from functional magnetic resonance imaging. We evaluate the proposed approach on ASD classification and severity prediction tasks, using a sex-balanced dataset of 228 ASD and typically developing subjects in a 10-fold cross-validation framework. We demonstrate that our attention-based model combining genetic information, demographic data, and functional magnetic resonance imaging results in superior prediction performance compared to other multimodal approaches.</p>","PeriodicalId":510900,"journal":{"name":"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)","volume":"14312 ","pages":"133-142"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139901037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning Sequential Information in Task-based fMRI for Synthetic Data Augmentation. 在基于任务的 fMRI 中学习序列信息,以实现合成数据增强。
Jiyao Wang, Nicha C Dvornek, Lawrence H Staib, James S Duncan

Insufficiency of training data is a persistent issue in medical image analysis, especially for task-based functional magnetic resonance images (fMRI) with spatio-temporal imaging data acquired using specific cognitive tasks. In this paper, we propose an approach for generating synthetic fMRI sequences that can then be used to create augmented training datasets in downstream learning tasks. To synthesize high-resolution task-specific fMRI, we adapt the α-GAN structure, leveraging advantages of both GAN and variational autoencoder models, and propose different alternatives in aggregating temporal information. The synthetic images are evaluated from multiple perspectives including visualizations and an autism spectrum disorder (ASD) classification task. The results show that the synthetic task-based fMRI can provide effective data augmentation in learning the ASD classification task.

训练数据不足是医学图像分析中一个长期存在的问题,尤其是对于基于任务的功能磁共振图像(fMRI),其时空成像数据是通过特定认知任务获取的。在本文中,我们提出了一种生成合成 fMRI 序列的方法,这些序列可用于在下游学习任务中创建增强训练数据集。为了合成高分辨率的特定任务 fMRI,我们调整了 α-GAN 结构,充分利用了 GAN 和变异自动编码器模型的优势,并提出了聚合时间信息的不同替代方案。我们从可视化和自闭症谱系障碍(ASD)分类任务等多个角度对合成图像进行了评估。结果表明,基于合成任务的 fMRI 可以为学习 ASD 分类任务提供有效的数据增强。
{"title":"Learning Sequential Information in Task-based fMRI for Synthetic Data Augmentation.","authors":"Jiyao Wang, Nicha C Dvornek, Lawrence H Staib, James S Duncan","doi":"10.1007/978-3-031-44858-4_8","DOIUrl":"https://doi.org/10.1007/978-3-031-44858-4_8","url":null,"abstract":"<p><p>Insufficiency of training data is a persistent issue in medical image analysis, especially for task-based functional magnetic resonance images (fMRI) with spatio-temporal imaging data acquired using specific cognitive tasks. In this paper, we propose an approach for generating synthetic fMRI sequences that can then be used to create augmented training datasets in downstream learning tasks. To synthesize high-resolution task-specific fMRI, we adapt the <i>α</i>-GAN structure, leveraging advantages of both GAN and variational autoencoder models, and propose different alternatives in aggregating temporal information. The synthetic images are evaluated from multiple perspectives including visualizations and an autism spectrum disorder (ASD) classification task. The results show that the synthetic task-based fMRI can provide effective data augmentation in learning the ASD classification task.</p>","PeriodicalId":510900,"journal":{"name":"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)","volume":"14312 ","pages":"79-88"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395879/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142305678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1