Transfer learning improves pMHC kinetic stability and immunogenicity predictions

Romanos Fasoulis , Mauricio Menegatti Rigo , Dinler Amaral Antunes , Georgios Paliouras , Lydia E. Kavraki
{"title":"Transfer learning improves pMHC kinetic stability and immunogenicity predictions","authors":"Romanos Fasoulis ,&nbsp;Mauricio Menegatti Rigo ,&nbsp;Dinler Amaral Antunes ,&nbsp;Georgios Paliouras ,&nbsp;Lydia E. Kavraki","doi":"10.1016/j.immuno.2023.100030","DOIUrl":null,"url":null,"abstract":"<div><p>The cellular immune response comprises several processes, with the most notable ones being the binding of the peptide to the Major Histocompability Complex (MHC), the peptide-MHC (pMHC) presentation to the surface of the cell, and the recognition of the pMHC by the T-Cell Receptor. Identifying the most potent peptide targets for MHC binding, presentation and T-cell recognition is vital for developing peptide-based vaccines and T-cell-based immunotherapies. Data-driven tools that predict each of these steps have been developed, and the availability of mass spectrometry (MS) datasets has facilitated the development of accurate Machine Learning (ML) methods for class-I pMHC binding prediction. However, the accuracy of ML-based tools for pMHC kinetic stability prediction and peptide immunogenicity prediction is uncertain, as stability and immunogenicity datasets are not abundant. Here, we use transfer learning techniques to improve stability and immunogenicity predictions, by taking advantage of a large number of binding affinity and MS datasets. The resulting models, TLStab and TLImm, exhibit comparable or better performance than state-of-the-art approaches on different stability and immunogenicity test sets respectively. Our approach demonstrates the promise of learning from the task of peptide binding to improve predictions on downstream tasks. The source code of TLStab and TLImm is publicly available at <span>https://github.com/KavrakiLab/TL-MHC</span><svg><path></path></svg>.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"13 ","pages":"Article 100030"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667119023000101/pdfft?md5=8b373c4d3341fd69e7933198d284cc77&pid=1-s2.0-S2667119023000101-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunoinformatics (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667119023000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The cellular immune response comprises several processes, with the most notable ones being the binding of the peptide to the Major Histocompability Complex (MHC), the peptide-MHC (pMHC) presentation to the surface of the cell, and the recognition of the pMHC by the T-Cell Receptor. Identifying the most potent peptide targets for MHC binding, presentation and T-cell recognition is vital for developing peptide-based vaccines and T-cell-based immunotherapies. Data-driven tools that predict each of these steps have been developed, and the availability of mass spectrometry (MS) datasets has facilitated the development of accurate Machine Learning (ML) methods for class-I pMHC binding prediction. However, the accuracy of ML-based tools for pMHC kinetic stability prediction and peptide immunogenicity prediction is uncertain, as stability and immunogenicity datasets are not abundant. Here, we use transfer learning techniques to improve stability and immunogenicity predictions, by taking advantage of a large number of binding affinity and MS datasets. The resulting models, TLStab and TLImm, exhibit comparable or better performance than state-of-the-art approaches on different stability and immunogenicity test sets respectively. Our approach demonstrates the promise of learning from the task of peptide binding to improve predictions on downstream tasks. The source code of TLStab and TLImm is publicly available at https://github.com/KavrakiLab/TL-MHC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迁移学习改进了 pMHC 动力稳定性和免疫原性预测
细胞免疫反应包括几个过程,其中最显著的是多肽与主要组织相容性复合物(MHC)结合、多肽-MHC(pMHC)呈递到细胞表面以及 T 细胞受体识别 pMHC。确定与 MHC 结合、呈递和 T 细胞识别的最有效多肽靶标对于开发多肽疫苗和 T 细胞免疫疗法至关重要。目前已开发出能预测其中每个步骤的数据驱动工具,质谱(MS)数据集的可用性也促进了用于 I 类 pMHC 结合预测的精确机器学习(ML)方法的开发。然而,由于稳定性和免疫原性数据集并不丰富,基于 ML 的 pMHC 动力稳定性预测和多肽免疫原性预测工具的准确性尚不确定。在此,我们利用迁移学习技术,利用大量的结合亲和力和质谱数据集来改进稳定性和免疫原性预测。由此产生的 TLStab 和 TLImm 模型分别在不同的稳定性和免疫原性测试集上表现出与最先进方法相当甚至更好的性能。我们的方法证明了从多肽结合任务中学习以改进下游任务预测的前景。TLStab 和 TLImm 的源代码可在 https://github.com/KavrakiLab/TL-MHC 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunoinformatics (Amsterdam, Netherlands)
Immunoinformatics (Amsterdam, Netherlands) Immunology, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
60 days
期刊最新文献
Scifer: An R/Bioconductor package for large-scale integration of Sanger sequencing and flow cytometry data of index-sorted single cells Lessons learned from the IMMREP23 TCR-epitope prediction challenge Multicohort analysis identifies conserved transcriptional interactions between humans and Plasmodium falciparum In silico modelling of CD8 T cell immune response links genetic regulation to population dynamics Data mining antibody sequences for database searching in bottom-up proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1