Jian Kang, Libei Zhong, Bin Hao, Yuelong Su, Yitao Zhao, Xianfeng Yan, Shuanghui Hao
{"title":"A novel linear displacement sensor based on double-threshold decoding algorithm","authors":"Jian Kang, Libei Zhong, Bin Hao, Yuelong Su, Yitao Zhao, Xianfeng Yan, Shuanghui Hao","doi":"10.1108/sr-02-2023-0029","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Most of the linear encoders are based on optics. The accuracy and reliability of these encoders are greatly reduced in polluted and noisy environments. Moreover, these encoders have a complex structure and large sensor volume and are thus not suited to small application scenarios and do not have universality. This paper aims to present a new absolute magnetic linear encoder, which has a simple structure, small size and wide application range.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The effect of swing error is analyzed for the sensor structural arrangement. A double-threshold interval algorithm is then proposed to synthesize multiple interval electrical angles into absolute angles and convert them into actual displacement distances.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The final linear encoder measurement range is 15.57 mm, and the resolution reaches ± 2 µm. The effectiveness of the algorithm is demonstrated experimentally.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The linear encoder has good robustness, and high measurement accuracy, which is suitable for industrial production. The linear encoder has been mass-produced and used in an electric power-assisted braking system.</p><!--/ Abstract__block -->","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":"48 6 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-02-2023-0029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Most of the linear encoders are based on optics. The accuracy and reliability of these encoders are greatly reduced in polluted and noisy environments. Moreover, these encoders have a complex structure and large sensor volume and are thus not suited to small application scenarios and do not have universality. This paper aims to present a new absolute magnetic linear encoder, which has a simple structure, small size and wide application range.
Design/methodology/approach
The effect of swing error is analyzed for the sensor structural arrangement. A double-threshold interval algorithm is then proposed to synthesize multiple interval electrical angles into absolute angles and convert them into actual displacement distances.
Findings
The final linear encoder measurement range is 15.57 mm, and the resolution reaches ± 2 µm. The effectiveness of the algorithm is demonstrated experimentally.
Originality/value
The linear encoder has good robustness, and high measurement accuracy, which is suitable for industrial production. The linear encoder has been mass-produced and used in an electric power-assisted braking system.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.