Lei Ren, Guolin Cheng, Wei Chen, Pei Li, Zhenhe Wang
{"title":"Advances in drift compensation algorithms for electronic nose technology","authors":"Lei Ren, Guolin Cheng, Wei Chen, Pei Li, Zhenhe Wang","doi":"10.1108/sr-06-2024-0554","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to explore recent advances in drift compensation algorithms for Electronic Nose (E-nose) technology and addresses sensor drift challenges through offline, online and neural network-based strategies. It offers a comprehensive review and covers causes of drift, compensation methods and future directions. This synthesis provides insights for enhancing the reliability and effectiveness of E-nose systems in drift issues.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The article adopts a comprehensive approach and systematically explores the causes of sensor drift in E-nose systems and proposes various compensation strategies. It covers both offline and online compensation methods, as well as neural network-based approaches, and provides a holistic view of the available techniques.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The article provides a comprehensive overview of drift compensation algorithms for E-nose technology and consolidates recent research insights. It addresses challenges like sensor calibration and algorithm complexity, while discussing future directions. Readers gain an understanding of the current state-of-the-art and emerging trends in electronic olfaction.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This article presents a comprehensive review of the latest advancements in drift compensation algorithms for electronic nose technology and covers the causes of drift, offline drift compensation algorithms, online drift compensation algorithms and neural network drift compensation algorithms. The article also summarizes and discusses the current challenges and future directions of drift compensation algorithms in electronic nose systems.</p><!--/ Abstract__block -->","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":"22 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-06-2024-0554","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to explore recent advances in drift compensation algorithms for Electronic Nose (E-nose) technology and addresses sensor drift challenges through offline, online and neural network-based strategies. It offers a comprehensive review and covers causes of drift, compensation methods and future directions. This synthesis provides insights for enhancing the reliability and effectiveness of E-nose systems in drift issues.
Design/methodology/approach
The article adopts a comprehensive approach and systematically explores the causes of sensor drift in E-nose systems and proposes various compensation strategies. It covers both offline and online compensation methods, as well as neural network-based approaches, and provides a holistic view of the available techniques.
Findings
The article provides a comprehensive overview of drift compensation algorithms for E-nose technology and consolidates recent research insights. It addresses challenges like sensor calibration and algorithm complexity, while discussing future directions. Readers gain an understanding of the current state-of-the-art and emerging trends in electronic olfaction.
Originality/value
This article presents a comprehensive review of the latest advancements in drift compensation algorithms for electronic nose technology and covers the causes of drift, offline drift compensation algorithms, online drift compensation algorithms and neural network drift compensation algorithms. The article also summarizes and discusses the current challenges and future directions of drift compensation algorithms in electronic nose systems.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.