Christian Schürings , Lidija Globevnik , Jan U. Lemm , Alexander Psomas , Luka Snoj , Daniel Hering , Sebastian Birk
{"title":"River ecological status is shaped by agricultural land use intensity across Europe","authors":"Christian Schürings , Lidija Globevnik , Jan U. Lemm , Alexander Psomas , Luka Snoj , Daniel Hering , Sebastian Birk","doi":"10.1016/j.watres.2024.121136","DOIUrl":null,"url":null,"abstract":"<div><p>Agriculture impacts the ecological status of freshwaters through multiple pressures such as diffuse pollution, water abstraction, and hydromorphological alteration, strongly impairing riverine biodiversity. The agricultural effects, however, likely differ between agricultural types and practices. In Europe, agricultural types show distinct spatial patterns related to intensity, biophysical conditions, and socioeconomic history, which have been operationalised by various landscape typologies. Our study aimed at analysing whether incorporating agricultural intensity enhances the correlation between agricultural land use and the ecological status. For this, we aggregated the continent's agricultural activities into 20 Areas of Farming-induced Freshwater Pressures (AFFP), specifying individual pressure profiles regarding nutrient enrichment, pesticides, water abstraction, and agricultural land use in the riparian zone to establish an agricultural intensity index and related this intensity index to the river ecological status. Using the agricultural intensity index, nearly doubled the correlative strength between agriculture and the ecological status of rivers as compared to the share of agriculture in the sub-catchment (based on the analysis of more than 50,000 sub-catchment units). Strongest agricultural pressures were found for high intensity cropland in the Mediterranean and Temperate regions, while extensive grassland, fallow farmland and livestock farming in the Northern and Highland regions, as well as low intensity mosaic farming, featured lowest pressures. The results provide advice for pan-European management of freshwater ecosystems and highlight the urgent need for more sustainable agriculture. Consequently, they can also be used as a basis for European Union-wide and global policies to halt biodiversity decline, such as the post-2027 renewal of the Common Agricultural Policy.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"251 ","pages":"Article 121136"},"PeriodicalIF":11.4000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0043135424000368/pdfft?md5=74f833433dd9aa707d1a4f3bc4904e03&pid=1-s2.0-S0043135424000368-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424000368","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Agriculture impacts the ecological status of freshwaters through multiple pressures such as diffuse pollution, water abstraction, and hydromorphological alteration, strongly impairing riverine biodiversity. The agricultural effects, however, likely differ between agricultural types and practices. In Europe, agricultural types show distinct spatial patterns related to intensity, biophysical conditions, and socioeconomic history, which have been operationalised by various landscape typologies. Our study aimed at analysing whether incorporating agricultural intensity enhances the correlation between agricultural land use and the ecological status. For this, we aggregated the continent's agricultural activities into 20 Areas of Farming-induced Freshwater Pressures (AFFP), specifying individual pressure profiles regarding nutrient enrichment, pesticides, water abstraction, and agricultural land use in the riparian zone to establish an agricultural intensity index and related this intensity index to the river ecological status. Using the agricultural intensity index, nearly doubled the correlative strength between agriculture and the ecological status of rivers as compared to the share of agriculture in the sub-catchment (based on the analysis of more than 50,000 sub-catchment units). Strongest agricultural pressures were found for high intensity cropland in the Mediterranean and Temperate regions, while extensive grassland, fallow farmland and livestock farming in the Northern and Highland regions, as well as low intensity mosaic farming, featured lowest pressures. The results provide advice for pan-European management of freshwater ecosystems and highlight the urgent need for more sustainable agriculture. Consequently, they can also be used as a basis for European Union-wide and global policies to halt biodiversity decline, such as the post-2027 renewal of the Common Agricultural Policy.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.