Direct Recovery of High-Purity Uranium from Fluoride-Containing Nuclear Wastewater via Extraction Materials with Ensemble Lewis Sites and a Tandem Electrochemical Device

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-03-09 DOI:10.1016/j.watres.2025.123467
Guo Li, Yan Liu, Chi Jiao, Zhengyu Jiang, Juan Zhang, Tao Chen, Tao Lin, Rong He, Wenkun Zhu, Xiangke Wang
{"title":"Direct Recovery of High-Purity Uranium from Fluoride-Containing Nuclear Wastewater via Extraction Materials with Ensemble Lewis Sites and a Tandem Electrochemical Device","authors":"Guo Li, Yan Liu, Chi Jiao, Zhengyu Jiang, Juan Zhang, Tao Chen, Tao Lin, Rong He, Wenkun Zhu, Xiangke Wang","doi":"10.1016/j.watres.2025.123467","DOIUrl":null,"url":null,"abstract":"Electrochemical uranium extraction from real nuclear wastewater with a high concentration of fluoride ions (F-) represents a promising strategy for the efficient treatment of radioactive wastewater and the recovery of the valuable uranium resource. However, the current progress suffers from the interference of extremely high concentration of F- and undesired purity of the final uranium product. Herein, we constructed the neighboring ensemble Lewis acid-base pair sites (ensemble Lewis sites) in bismuth oxides as the extraction material, which was integrated into a designed tandem electrochemical device for efficient recovery of high-purity uranium from real nuclear wastewater. The mechanistic study revealed that the ensemble Lewis sites dramatically enhance the binding of all dominant uranyl fluoride (UO2Fx) species through the simultaneous strengthened chemical bonds with U, O, and F atoms. Besides, the tandem electrochemical device rationally controlled the reaction period to U3O8, avoiding the undesired crystalline transformation to K2U2O7. Through 3 h electrolysis in 1 L of real nuclear wastewater, the extraction efficiency of uranium reached 99.9% with only 2.2% impurities of alkali metals in extracted uranium product, outperforming the previous work. This study offers an effective method for the recovery of uranium resources in real nuclear wastewater.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"38 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123467","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical uranium extraction from real nuclear wastewater with a high concentration of fluoride ions (F-) represents a promising strategy for the efficient treatment of radioactive wastewater and the recovery of the valuable uranium resource. However, the current progress suffers from the interference of extremely high concentration of F- and undesired purity of the final uranium product. Herein, we constructed the neighboring ensemble Lewis acid-base pair sites (ensemble Lewis sites) in bismuth oxides as the extraction material, which was integrated into a designed tandem electrochemical device for efficient recovery of high-purity uranium from real nuclear wastewater. The mechanistic study revealed that the ensemble Lewis sites dramatically enhance the binding of all dominant uranyl fluoride (UO2Fx) species through the simultaneous strengthened chemical bonds with U, O, and F atoms. Besides, the tandem electrochemical device rationally controlled the reaction period to U3O8, avoiding the undesired crystalline transformation to K2U2O7. Through 3 h electrolysis in 1 L of real nuclear wastewater, the extraction efficiency of uranium reached 99.9% with only 2.2% impurities of alkali metals in extracted uranium product, outperforming the previous work. This study offers an effective method for the recovery of uranium resources in real nuclear wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Dissociation-dependent kinetics and distinct pathways for direct photolysis and OH/SO4− radical dominated photodegradation of ionizable antiviral drugs in aquatic systems A bioelectronic tongue to estimate the toxicological intensity of pollutants in wastewater treatment plant Direct Recovery of High-Purity Uranium from Fluoride-Containing Nuclear Wastewater via Extraction Materials with Ensemble Lewis Sites and a Tandem Electrochemical Device Heatwave Enhance the Adaptability of Chlorella pyrenoidosa to Zinc Oxide Nanoparticles: Regulation of Interfacial Interactions and Metabolic Mechanisms Green and efficient disinfection of antibiotic-resistant bacteria via PI/H2O2 homogeneous system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1