{"title":"M2AI-CVD: Multi-modal AI approach cardiovascular risk prediction system using fundus images.","authors":"Premalatha Gurumurthy, Manjunathan Alagarsamy, Sangeetha Kuppusamy, Niranjana Chitra Ponnusamy","doi":"10.1080/0954898X.2024.2306988","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases (CVD) represent a significant global health challenge, often remaining undetected until severe cardiac events, such as heart attacks or strokes, occur. In regions like Qatar, research focused on non-invasive CVD identification methods, such as retinal imaging and dual-energy X-ray absorptiometry (DXA), is limited. This study presents a groundbreaking system known as Multi-Modal Artificial Intelligence for Cardiovascular Disease (M2AI-CVD), designed to provide highly accurate predictions of CVD. The M2AI-CVD framework employs a four-fold methodology: First, it rigorously evaluates image quality and processes lower-quality images for further analysis. Subsequently, it uses the Entropy-based Fuzzy C Means (EnFCM) algorithm for precise image segmentation. The Multi-Modal Boltzmann Machine (MMBM) is then employed to extract relevant features from various data modalities, while the Genetic Algorithm (GA) selects the most informative features. Finally, a ZFNet Convolutional Neural Network (ZFNetCNN) classifies images, effectively distinguishing between CVD and Non-CVD cases. The research's culmination, tested across five distinct datasets, yields outstanding results, with an accuracy of 95.89%, sensitivity of 96.89%, and specificity of 98.7%. This multi-modal AI approach offers a promising solution for the accurate and early detection of cardiovascular diseases, significantly improving the prospects of timely intervention and improved patient outcomes in the realm of cardiovascular health.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"319-346"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2306988","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases (CVD) represent a significant global health challenge, often remaining undetected until severe cardiac events, such as heart attacks or strokes, occur. In regions like Qatar, research focused on non-invasive CVD identification methods, such as retinal imaging and dual-energy X-ray absorptiometry (DXA), is limited. This study presents a groundbreaking system known as Multi-Modal Artificial Intelligence for Cardiovascular Disease (M2AI-CVD), designed to provide highly accurate predictions of CVD. The M2AI-CVD framework employs a four-fold methodology: First, it rigorously evaluates image quality and processes lower-quality images for further analysis. Subsequently, it uses the Entropy-based Fuzzy C Means (EnFCM) algorithm for precise image segmentation. The Multi-Modal Boltzmann Machine (MMBM) is then employed to extract relevant features from various data modalities, while the Genetic Algorithm (GA) selects the most informative features. Finally, a ZFNet Convolutional Neural Network (ZFNetCNN) classifies images, effectively distinguishing between CVD and Non-CVD cases. The research's culmination, tested across five distinct datasets, yields outstanding results, with an accuracy of 95.89%, sensitivity of 96.89%, and specificity of 98.7%. This multi-modal AI approach offers a promising solution for the accurate and early detection of cardiovascular diseases, significantly improving the prospects of timely intervention and improved patient outcomes in the realm of cardiovascular health.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.