A novel efficient data storage and data auditing in cloud environment using enhanced child drawing development optimization strategy.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2025-01-17 DOI:10.1080/0954898X.2024.2443622
Aruna Kari Balakrishnan, Arunachalaperumal Chellaperumal, Sudha Lakshmanan, Sureka Vijayakumar
{"title":"A novel efficient data storage and data auditing in cloud environment using enhanced child drawing development optimization strategy.","authors":"Aruna Kari Balakrishnan, Arunachalaperumal Chellaperumal, Sudha Lakshmanan, Sureka Vijayakumar","doi":"10.1080/0954898X.2024.2443622","DOIUrl":null,"url":null,"abstract":"<p><p>The optimization on the cloud-based data structures is carried out using Adaptive Level and Skill Rate-based Child Drawing Development Optimization algorithm (ALSR-CDDO). Also, the overall cost required in computing and communicating is reduced by optimally selecting these data structures by the ALSR-CDDO algorithm. The storage of the data in the cloud platform is performed using the Divide and Conquer Table (D&CT). The location table and the information table are generated using the D&CT method. The details, such as the file information, file ID, version number, and user ID, are all present in the information table. Every time data is deleted or updated, and its version number is modified. Whenever an update takes place using D&CT, the location table also gets upgraded. The information regarding the location of a file in the Cloud Service Provider (CSP) is given in the location table. Once the data is stored in the CSP, the auditing of the data is then performed on the stored data. Both dynamic and batch auditing are carried out on the stored data, even if it gets updated dynamically in the CSP. The security offered by the executed scheme is verified by contrasting it with other existing auditing schemes.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-41"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2443622","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The optimization on the cloud-based data structures is carried out using Adaptive Level and Skill Rate-based Child Drawing Development Optimization algorithm (ALSR-CDDO). Also, the overall cost required in computing and communicating is reduced by optimally selecting these data structures by the ALSR-CDDO algorithm. The storage of the data in the cloud platform is performed using the Divide and Conquer Table (D&CT). The location table and the information table are generated using the D&CT method. The details, such as the file information, file ID, version number, and user ID, are all present in the information table. Every time data is deleted or updated, and its version number is modified. Whenever an update takes place using D&CT, the location table also gets upgraded. The information regarding the location of a file in the Cloud Service Provider (CSP) is given in the location table. Once the data is stored in the CSP, the auditing of the data is then performed on the stored data. Both dynamic and batch auditing are carried out on the stored data, even if it gets updated dynamically in the CSP. The security offered by the executed scheme is verified by contrasting it with other existing auditing schemes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Performance analysis of image retrieval system using deep learning techniques. A novel efficient data storage and data auditing in cloud environment using enhanced child drawing development optimization strategy. Personalized recommendation system to handle skin cancer at early stage based on hybrid model. Robust text-dependent speaker verification system using gender aware Siamese-Triplet Deep Neural Network. Investigation on the reliability calculation method of gravity dam based on CNN-LSTM and Monte Carlo method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1