Performance analysis of image retrieval system using deep learning techniques.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2025-01-20 DOI:10.1080/0954898X.2025.2451388
Selvalakshmi B, Hemalatha K, Kumarganesh S, Vijayalakshmi P
{"title":"Performance analysis of image retrieval system using deep learning techniques.","authors":"Selvalakshmi B, Hemalatha K, Kumarganesh S, Vijayalakshmi P","doi":"10.1080/0954898X.2025.2451388","DOIUrl":null,"url":null,"abstract":"<p><p>The image retrieval is the process of retrieving the relevant images to the query image with minimal searching time in internet. The problem of the conventional Content-Based Image Retrieval (CBIR) system is that they produce retrieval results for either colour images or grey scale images alone. Moreover, the CBIR system is more complex which consumes more time period for producing the significant retrieval results. These problems are overcome through the proposed methodologies stated in this work. In this paper, the General Image (GI) and Medical Image (MI) are retrieved using deep learning architecture. The proposed system is designed with feature computation module, Retrieval Convolutional Neural Network (RETCNN) module, and Distance computation algorithm. The distance computation algorithm is used to compute the distances between the query image and the images in the datasets and produces the retrieval results. The average precision and recall for the proposed RETCNN-based CBIRS is 98.98% and 99.15% respectively for GI category, and the average precision and recall for the proposed RETCNN-based CBIRS are 99.04% and 98.89% respectively for MI category. The significance of these experimental results is used to produce the higher image retrieval rate of the proposed system.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-21"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2451388","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The image retrieval is the process of retrieving the relevant images to the query image with minimal searching time in internet. The problem of the conventional Content-Based Image Retrieval (CBIR) system is that they produce retrieval results for either colour images or grey scale images alone. Moreover, the CBIR system is more complex which consumes more time period for producing the significant retrieval results. These problems are overcome through the proposed methodologies stated in this work. In this paper, the General Image (GI) and Medical Image (MI) are retrieved using deep learning architecture. The proposed system is designed with feature computation module, Retrieval Convolutional Neural Network (RETCNN) module, and Distance computation algorithm. The distance computation algorithm is used to compute the distances between the query image and the images in the datasets and produces the retrieval results. The average precision and recall for the proposed RETCNN-based CBIRS is 98.98% and 99.15% respectively for GI category, and the average precision and recall for the proposed RETCNN-based CBIRS are 99.04% and 98.89% respectively for MI category. The significance of these experimental results is used to produce the higher image retrieval rate of the proposed system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习技术的图像检索系统性能分析。
图像检索是在网络上以最小的搜索时间检索到所查询图像的相关图像的过程。传统的基于内容的图像检索(CBIR)系统的问题是,它们只能对彩色图像或灰度图像产生检索结果。此外,CBIR系统比较复杂,要产生有意义的检索结果需要耗费更多的时间。这些问题是通过在这项工作中提出的方法来克服的。本文采用深度学习架构对通用图像(GI)和医学图像(MI)进行检索。该系统由特征计算模块、检索卷积神经网络(RETCNN)模块和距离计算算法组成。距离计算算法用于计算查询图像与数据集中图像之间的距离,并产生检索结果。基于retcnn的CBIRS在GI分类上的平均准确率和召回率分别为98.98%和99.15%,在MI分类上的平均准确率和召回率分别为99.04%和98.89%。利用这些实验结果的显著性,使所提出的系统具有较高的图像检索率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Optimization-assisted deep two-layer framework for ddos attack detection and proposed mitigation in software defined network. ZF-QDCNN: ZFNet and quantum dilated convolutional neural network based Alzheimer's disease detection using MRI images. Haemorrhage diagnosis in colour fundus images using a fast-convolutional neural network based on a modified U-Net. Q-learning and fuzzy logic multi-tier multi-access edge clustering for 5g v2x communication. Deep learning and optimization enabled multi-objective for task scheduling in cloud computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1