Robust text-dependent speaker verification system using gender aware Siamese-Triplet Deep Neural Network.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-12-29 DOI:10.1080/0954898X.2024.2438128
Sanghamitra V Arora
{"title":"Robust text-dependent speaker verification system using gender aware Siamese-Triplet Deep Neural Network.","authors":"Sanghamitra V Arora","doi":"10.1080/0954898X.2024.2438128","DOIUrl":null,"url":null,"abstract":"<p><p>Speaker verification in text-dependent scenarios is critical for high-security applications but faces challenges such as voice quality variations, linguistic diversity, and gender-related pitch differences, which affect authentication accuracy. This paper introduces a Gender-Aware Siamese-Triplet Network-Deep Neural Network (ST-DNN) architecture to address these challenges. The Gender-Aware Network utilizes Convolutional 2D layers with ReLU activation for initial feature extraction, followed by multi-fusion dense skip connections and batch normalization to integrate features across different depths, enhancing discrimination between male and female speakers. A bottleneck layer compresses feature maps to capture gender-related characteristics effectively. For enhanced speaker verification, separate male and female ST-DNN models are used, each incorporating Individual, Siamese, and Triplet Networks. The Individual Network extracts unique utterance characteristics, the Siamese Network compares speech sample pairs for speaker identity, and the Triplet Network ensures closely grouped embeddings of samples from the same speaker, facilitating precise verification. Experimental results on RSR2015 and RedDots Challenge 2016 datasets demonstrate significant improvements, with reductions in Equal Error Rate (EER) ranging from 32.31% to 54.55% for males and 33.73% to 38.98% for females, and reductions in MinDCF from 53.47% to 86.36% and 39.46% to 71.19%, respectively, validating the efficacy of the ST-DNN in real-world applications.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-40"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2438128","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Speaker verification in text-dependent scenarios is critical for high-security applications but faces challenges such as voice quality variations, linguistic diversity, and gender-related pitch differences, which affect authentication accuracy. This paper introduces a Gender-Aware Siamese-Triplet Network-Deep Neural Network (ST-DNN) architecture to address these challenges. The Gender-Aware Network utilizes Convolutional 2D layers with ReLU activation for initial feature extraction, followed by multi-fusion dense skip connections and batch normalization to integrate features across different depths, enhancing discrimination between male and female speakers. A bottleneck layer compresses feature maps to capture gender-related characteristics effectively. For enhanced speaker verification, separate male and female ST-DNN models are used, each incorporating Individual, Siamese, and Triplet Networks. The Individual Network extracts unique utterance characteristics, the Siamese Network compares speech sample pairs for speaker identity, and the Triplet Network ensures closely grouped embeddings of samples from the same speaker, facilitating precise verification. Experimental results on RSR2015 and RedDots Challenge 2016 datasets demonstrate significant improvements, with reductions in Equal Error Rate (EER) ranging from 32.31% to 54.55% for males and 33.73% to 38.98% for females, and reductions in MinDCF from 53.47% to 86.36% and 39.46% to 71.19%, respectively, validating the efficacy of the ST-DNN in real-world applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Performance analysis of image retrieval system using deep learning techniques. A novel efficient data storage and data auditing in cloud environment using enhanced child drawing development optimization strategy. Personalized recommendation system to handle skin cancer at early stage based on hybrid model. Robust text-dependent speaker verification system using gender aware Siamese-Triplet Deep Neural Network. Investigation on the reliability calculation method of gravity dam based on CNN-LSTM and Monte Carlo method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1