Ionomer boosts catalyst layer oxygen transport and membrane ion conduction for fuel cells

Weisheng Yu , Yan Xu , Xianhe Shen , Xiaoqi Yang , Zhiru Liu , Huijuan Wang , Xian Liang , Xiaolin Ge , Michael D. Guiver , Liang Wu , Tongwen Xu
{"title":"Ionomer boosts catalyst layer oxygen transport and membrane ion conduction for fuel cells","authors":"Weisheng Yu ,&nbsp;Yan Xu ,&nbsp;Xianhe Shen ,&nbsp;Xiaoqi Yang ,&nbsp;Zhiru Liu ,&nbsp;Huijuan Wang ,&nbsp;Xian Liang ,&nbsp;Xiaolin Ge ,&nbsp;Michael D. Guiver ,&nbsp;Liang Wu ,&nbsp;Tongwen Xu","doi":"10.1016/j.nxener.2024.100104","DOIUrl":null,"url":null,"abstract":"<div><p>Anion exchange ionomers employed as electrode catalyst binders and anion exchange membranes are central components for anion exchange membrane fuel cells. Fast oxygen transport in the catalyst binder and high ion conductivity of the ionomer and membrane are essential while designing their molecular structure. Here, we tailor a fluorinated ionomer and elucidate the effect of fluorination on the properties of catalyst binder and membrane. The extraordinary oxygen-dissolving capacity of the fluorinated ionomer improves the local oxygen transport at the catalyst layer triple-phase boundary. Moreover, fluorination enhances the mechanical stability and chemical inertness of the ionomer membrane and promotes its self-assembly to construct well-defined microphase separated morphology by increasing chain thermodynamic immiscibility. The resulting fluorinated membrane shows 1.4–1.8-fold improvements in hydroxide conductivity and mechanical properties compared to the fluorine-free counterpart, as well as exceptional alkaline stability (over 90% hydroxide conductivity retention under 2 M aq. NaOH at 80 °C for 2000 h). Such synergistic improvements in ionomer binder and membrane significantly improve the single-cell performance (1.7 vs. 1.0 W cm<sup>−2</sup> peak power density) and durability (1.8 vs. 2.4 mV h<sup>−1</sup> voltage decline rate for 100 h).</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000097/pdfft?md5=a0456d66862109f77823626e8e9b8403&pid=1-s2.0-S2949821X24000097-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anion exchange ionomers employed as electrode catalyst binders and anion exchange membranes are central components for anion exchange membrane fuel cells. Fast oxygen transport in the catalyst binder and high ion conductivity of the ionomer and membrane are essential while designing their molecular structure. Here, we tailor a fluorinated ionomer and elucidate the effect of fluorination on the properties of catalyst binder and membrane. The extraordinary oxygen-dissolving capacity of the fluorinated ionomer improves the local oxygen transport at the catalyst layer triple-phase boundary. Moreover, fluorination enhances the mechanical stability and chemical inertness of the ionomer membrane and promotes its self-assembly to construct well-defined microphase separated morphology by increasing chain thermodynamic immiscibility. The resulting fluorinated membrane shows 1.4–1.8-fold improvements in hydroxide conductivity and mechanical properties compared to the fluorine-free counterpart, as well as exceptional alkaline stability (over 90% hydroxide conductivity retention under 2 M aq. NaOH at 80 °C for 2000 h). Such synergistic improvements in ionomer binder and membrane significantly improve the single-cell performance (1.7 vs. 1.0 W cm−2 peak power density) and durability (1.8 vs. 2.4 mV h−1 voltage decline rate for 100 h).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子聚合物促进燃料电池催化剂层的氧气传输和膜离子传导
用作电极催化剂粘合剂和阴离子交换膜的阴离子交换离子聚合物是阴离子交换膜燃料电池的核心部件。在设计其分子结构时,催化剂粘合剂中的快速氧传输以及离子聚合物和膜的高离子传导性至关重要。在此,我们定制了一种氟化离子膜,并阐明了氟化对催化剂粘合剂和膜性能的影响。氟化离子膜非凡的氧气溶解能力改善了催化剂层三相边界的局部氧气传输。此外,氟化还增强了离子膜的机械稳定性和化学惰性,并通过提高链的热力学不溶性来促进其自组装,从而构建明确的微相分离形态。与不含氟的同类产品相比,氟化膜的氢氧化物传导性和机械性能提高了 1.4-1.8 倍,并且具有优异的碱性稳定性(在 80 °C 的 2 M aq. NaOH 溶液中保持超过 90% 的氢氧化物传导性达 2000 小时)。离子粘合剂和膜的协同改进显著提高了单细胞性能(峰值功率密度为 1.7 W cm-2 与 1.0 W cm-2)和耐用性(100 小时内电压下降率为 1.8 mV h-1 与 2.4 mV h-1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dry reforming of methane and interaction between NiO and CeZrPrOx oxide in different crystallographic plane Hierarchical control of inverter-based microgrid with droop approach and proportional-integral controller Assessment of Iron(III) chloride as a catalyst for the production of hydrogen from the supercritical water gasification of microalgae In situ growth of 3D nano-array architecture Bi2S3/nickel foam assembled by interwoven nanosheets electrodes for hybrid supercapacitor Reducing resistances of all-solid-state polymer batteries via hot-press activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1