Reducing resistances of all-solid-state polymer batteries via hot-press activation

{"title":"Reducing resistances of all-solid-state polymer batteries via hot-press activation","authors":"","doi":"10.1016/j.nxener.2024.100195","DOIUrl":null,"url":null,"abstract":"<div><p>All-solid-state lithium batteries (ASSLB) utilizing solid polymer electrolytes (SPEs) are attractive due to the enhanced safety and processability. However, operation of the cells usually requires elevated temperatures to overcome the low ionic conductivity or high interfacial resistance issue. Through this study, we identify that grain boundaries within SPE exist and play a crucial role on Li-ion transport and cell performance. Accordingly, a direct hot-press activation approach was proposed and demonstrated significant reduction of boundary resistance within the SPE, leading to a fourfold increase in room temperature (r.t.) ionic conductivity. The detailed morphological and structural study suggest a pressure-induced amorphization mechanism for the activation of room-temperature SPE. Through this facile activation procedure, all solid-state LiFeO<sub>4</sub> (LFP)|SPE|Li cells demonstrate improved performance for both high specific capacity and stable cycling at r.t.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24001005/pdfft?md5=9032b43b87b8264841b16b35e74ba2be&pid=1-s2.0-S2949821X24001005-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24001005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

All-solid-state lithium batteries (ASSLB) utilizing solid polymer electrolytes (SPEs) are attractive due to the enhanced safety and processability. However, operation of the cells usually requires elevated temperatures to overcome the low ionic conductivity or high interfacial resistance issue. Through this study, we identify that grain boundaries within SPE exist and play a crucial role on Li-ion transport and cell performance. Accordingly, a direct hot-press activation approach was proposed and demonstrated significant reduction of boundary resistance within the SPE, leading to a fourfold increase in room temperature (r.t.) ionic conductivity. The detailed morphological and structural study suggest a pressure-induced amorphization mechanism for the activation of room-temperature SPE. Through this facile activation procedure, all solid-state LiFeO4 (LFP)|SPE|Li cells demonstrate improved performance for both high specific capacity and stable cycling at r.t.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过热压活化降低全固态聚合物电池的电阻
利用固体聚合物电解质(SPE)的全固态锂电池(ASSLB)具有更高的安全性和可加工性,因此很有吸引力。然而,电池的运行通常需要较高的温度,以克服低离子电导率或高界面电阻的问题。通过这项研究,我们发现 SPE 中存在晶界,并对锂离子传输和电池性能起着至关重要的作用。因此,我们提出了一种直接热压活化方法,该方法显著降低了 SPE 内的边界电阻,使室温离子电导率提高了四倍。详细的形态和结构研究表明,室温活化 SPE 的机制是压力诱导的非晶化。通过这种简便的活化过程,所有固态 LiFeO4 (LFP)|SPE|Li 电池在高比容量和室温(r.t.)下稳定循环方面都表现出了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dry reforming of methane and interaction between NiO and CeZrPrOx oxide in different crystallographic plane Hierarchical control of inverter-based microgrid with droop approach and proportional-integral controller Assessment of Iron(III) chloride as a catalyst for the production of hydrogen from the supercritical water gasification of microalgae In situ growth of 3D nano-array architecture Bi2S3/nickel foam assembled by interwoven nanosheets electrodes for hybrid supercapacitor Reducing resistances of all-solid-state polymer batteries via hot-press activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1