Mohamed Boumalkha, Mohammed Lahsaini, Hafid Griguer, Otman El Mrabet, Taj Eddin Elhamadi, Moulay El Hassane Archidi, Jamal EL Aoufi, Mohamed Taouzari
{"title":"Implementation of an LNA Using a Microstrip Coupler as a DC-Block for Sub-6 5G Communication Systems","authors":"Mohamed Boumalkha, Mohammed Lahsaini, Hafid Griguer, Otman El Mrabet, Taj Eddin Elhamadi, Moulay El Hassane Archidi, Jamal EL Aoufi, Mohamed Taouzari","doi":"10.1134/s106373972370066x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This paper presents the design strategy of a microwave low noise amplifier (LNA) in microstrip technology for sub-6 GHz 5G communication systems. A microstrip coupler is exploited to design a DC block in order to avoid unwanted parasitic effects generated by lumped elements and to facilitate fabrication. Bias and matching networks are implemented using microstrip transmission lines. Based on the designed circuit, a prototype is fabricated and measured using an Agilent Technologies (hp)® ATF13786 field effect transistor. The proposed LNA is simulated and measured at 3.5 GHz. The results demonstrate that the proposed LNA achieves high gain of 12.7 dB, noise figure less than 2 dB, input and output reflection coefficients less than –10 dB, and unconditional stability over the desired bandwidth. Regarding the large signal results, the proposed LNA yields excellent performance with an output power of 16.4 dBm, and a power added efficiency (PAE) of 18%. Furthermore, the proposed LNA exhibits good linearity with an output compression point at 1 dB (OP1dB) of 0 dBm, and a third-order intercept point (OIP3) greater than +37.7 dBm.</p>","PeriodicalId":21534,"journal":{"name":"Russian Microelectronics","volume":"254 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s106373972370066x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the design strategy of a microwave low noise amplifier (LNA) in microstrip technology for sub-6 GHz 5G communication systems. A microstrip coupler is exploited to design a DC block in order to avoid unwanted parasitic effects generated by lumped elements and to facilitate fabrication. Bias and matching networks are implemented using microstrip transmission lines. Based on the designed circuit, a prototype is fabricated and measured using an Agilent Technologies (hp)® ATF13786 field effect transistor. The proposed LNA is simulated and measured at 3.5 GHz. The results demonstrate that the proposed LNA achieves high gain of 12.7 dB, noise figure less than 2 dB, input and output reflection coefficients less than –10 dB, and unconditional stability over the desired bandwidth. Regarding the large signal results, the proposed LNA yields excellent performance with an output power of 16.4 dBm, and a power added efficiency (PAE) of 18%. Furthermore, the proposed LNA exhibits good linearity with an output compression point at 1 dB (OP1dB) of 0 dBm, and a third-order intercept point (OIP3) greater than +37.7 dBm.
期刊介绍:
Russian Microelectronics covers physical, technological, and some VLSI and ULSI circuit-technical aspects of microelectronics and nanoelectronics; it informs the reader of new trends in submicron optical, x-ray, electron, and ion-beam lithography technology; dry processing techniques, etching, doping; and deposition and planarization technology. Significant space is devoted to problems arising in the application of proton, electron, and ion beams, plasma, etc. Consideration is given to new equipment, including cluster tools and control in situ and submicron CMOS, bipolar, and BICMOS technologies. The journal publishes papers addressing problems of molecular beam epitaxy and related processes; heterojunction devices and integrated circuits; the technology and devices of nanoelectronics; and the fabrication of nanometer scale devices, including new device structures, quantum-effect devices, and superconducting devices. The reader will find papers containing news of the diagnostics of surfaces and microelectronic structures, the modeling of technological processes and devices in micro- and nanoelectronics, including nanotransistors, and solid state qubits.