Do-Kywn Kim , Dong-Seok Kim , Tae-Eon Kim , Min-Ju Kim , Seung Heon Shin
{"title":"Investigation of low to high-dose gamma-ray (γ-ray) radiation effects on indium-zinc-oxide (IZO) thin film transistor (TFT)","authors":"Do-Kywn Kim , Dong-Seok Kim , Tae-Eon Kim , Min-Ju Kim , Seung Heon Shin","doi":"10.1016/j.sse.2024.108884","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the impact of gamma-ray (γ-ray) radiation at doses of 100 krads and 1,000 krads on amorphous indium-zinc-oxide (IZO) thin-film transistors (TFTs). The IZO channel's properties are analyzed using X-ray photoelectron spectroscopy (XPS) before and after radiation. Following 100 krads exposure, the oxygen vacancy (V<sub>O</sub>) peak in the IZO channel increases from 41.8 % to 59.4 % due to the generation of electron-hole pairs. Additionally, the threshold voltage of the IZO TFT negatively shifts from 10.1 V to 5.5 V due to positive charges in the gate oxide layer. Following exposure to 1,000 krads gamma-ray radiation, the threshold voltage of 8.8 V is similar to that of 9.8 V for the non-irradiated TFT. Remarkably, the subthreshold swing (SS) remains unchanged, while the maximum transconductance (g<sub>m,max</sub>) is improved by 10.0 % and effective mobility (µ<sub>FE</sub>) by 6.1 %. These enhancements result from the diffusion of indium, zinc, and oxygen into the gate oxide layer thanks to the self-heating effect at a dose of 1,000 krads. Based on the results, our findings indicate the IZO TFT shows a significant potential for a radiation-hardness electronic device in harsh environments.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"215 ","pages":"Article 108884"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124000339","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the impact of gamma-ray (γ-ray) radiation at doses of 100 krads and 1,000 krads on amorphous indium-zinc-oxide (IZO) thin-film transistors (TFTs). The IZO channel's properties are analyzed using X-ray photoelectron spectroscopy (XPS) before and after radiation. Following 100 krads exposure, the oxygen vacancy (VO) peak in the IZO channel increases from 41.8 % to 59.4 % due to the generation of electron-hole pairs. Additionally, the threshold voltage of the IZO TFT negatively shifts from 10.1 V to 5.5 V due to positive charges in the gate oxide layer. Following exposure to 1,000 krads gamma-ray radiation, the threshold voltage of 8.8 V is similar to that of 9.8 V for the non-irradiated TFT. Remarkably, the subthreshold swing (SS) remains unchanged, while the maximum transconductance (gm,max) is improved by 10.0 % and effective mobility (µFE) by 6.1 %. These enhancements result from the diffusion of indium, zinc, and oxygen into the gate oxide layer thanks to the self-heating effect at a dose of 1,000 krads. Based on the results, our findings indicate the IZO TFT shows a significant potential for a radiation-hardness electronic device in harsh environments.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.