Kar Shen Tan , Chee Kiang Lam , Wee Choon Tan , Heap Sheng Ooi , Zi Hao Lim
{"title":"A review of image processing and quantification analysis for solid oxide fuel cell","authors":"Kar Shen Tan , Chee Kiang Lam , Wee Choon Tan , Heap Sheng Ooi , Zi Hao Lim","doi":"10.1016/j.egyai.2024.100354","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this study is to investigate the approaches applied to analyze solid oxide fuel cell (SOFC) microstructural properties. Both manual and automated image processing approaches applied on SOFC microstructural images which are obtained from several types of tomography such as dual-beam focused ion beam with scanning electron microscopy (FIB-SEM), Electron Backscatter Diffraction (EBSD) and others are discussed. In fact, to achieve a realistic and accurate SOFC microstructural properties, such as average diameter, volume fraction, triple phase boundary (TPB), area interface density and tortuosity factor, the approaches of image processing and quantification are crucial for a reliable image generation for quantification purposes. The microstructural properties are optimized to improve SOFC electrode performance. Therefore, the image processing and quantification approaches are outlined and reviewed. Despite the automated image processing and quantification algorithms significantly outperform manual image processing and quantification approaches in terms of computing speed when evaluating and measuring microstructural properties, the efficiency and productivity are still extremely taken into concern. As a result, image processing and quantification approaches are concluded and presented respectively in this paper.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"16 ","pages":"Article 100354"},"PeriodicalIF":9.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266654682400020X/pdfft?md5=f30e1e987a2fe67d45ec45e82cf2aea4&pid=1-s2.0-S266654682400020X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654682400020X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study is to investigate the approaches applied to analyze solid oxide fuel cell (SOFC) microstructural properties. Both manual and automated image processing approaches applied on SOFC microstructural images which are obtained from several types of tomography such as dual-beam focused ion beam with scanning electron microscopy (FIB-SEM), Electron Backscatter Diffraction (EBSD) and others are discussed. In fact, to achieve a realistic and accurate SOFC microstructural properties, such as average diameter, volume fraction, triple phase boundary (TPB), area interface density and tortuosity factor, the approaches of image processing and quantification are crucial for a reliable image generation for quantification purposes. The microstructural properties are optimized to improve SOFC electrode performance. Therefore, the image processing and quantification approaches are outlined and reviewed. Despite the automated image processing and quantification algorithms significantly outperform manual image processing and quantification approaches in terms of computing speed when evaluating and measuring microstructural properties, the efficiency and productivity are still extremely taken into concern. As a result, image processing and quantification approaches are concluded and presented respectively in this paper.