Surface modification by CO2 plasma boosting core shells structural Fe/Fe3C/FeN @ graphite carbon nanoparticles toward high performance microwave absorber

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Nano Pub Date : 2024-03-01 DOI:10.1016/j.mtnano.2024.100465
Xiaoqiang Li, Qun Wang, Yunfei Yu
{"title":"Surface modification by CO2 plasma boosting core shells structural Fe/Fe3C/FeN @ graphite carbon nanoparticles toward high performance microwave absorber","authors":"Xiaoqiang Li,&nbsp;Qun Wang,&nbsp;Yunfei Yu","doi":"10.1016/j.mtnano.2024.100465","DOIUrl":null,"url":null,"abstract":"<div><p>The surface modification of three-dimensional (3D) materials is an efficient method for adjusting their interfacial defect concentration, electronic conductivity and content of functional groups with extensive applications in catalysis, electrode materials and bioengineering. In this work, a multiphase iron nanocrystals consisting of Fe<sub>3</sub>C, Fe and FeN nanoparticles encapsulated in hierarchical structure of graphite carbon (denoted as Fe/Fe<sub>3</sub>C/FeN@GC) is synthesized for the first time by a novel high temperature plasma method. Meanwhile, more defects and functional groups are introduced by surface modification of graphite carbon layer of Fe/Fe<sub>3</sub>C/FeN@GC with controllable CO<sub>2</sub> (low temperature) plasma. Benefiting from the advantages of multiple heterogenous interface and the abundant interfacial polarization relaxation that represent strong electromagnetic (EM) wave dissipation as well as an applicable impedance matching, the optimized Fe/Fe<sub>3</sub>C/FeN@GC demonstrate superior microwave absorption (MA) properties. The minimum reflection loss (RL) achieves −54.4 dB (more than 99.9% MA) at 17.6 GHz with a thin thickness of 1.8 mm, and the maximum effective absorption bandwidth (EAB, RL &lt; −10 dB) is up to 6.2 GHz (11.8–18.0 GHz) at 2.0 mm. The above results reveal that the optimized Fe/Fe<sub>3</sub>C/FeN@GC composites with strong absorption, broad EAB, light mass (only filling content of 30 wt%) and ultrathin thickness are prospective candidate for high performance EM wave absorbers.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"25 ","pages":"Article 100465"},"PeriodicalIF":8.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000154","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The surface modification of three-dimensional (3D) materials is an efficient method for adjusting their interfacial defect concentration, electronic conductivity and content of functional groups with extensive applications in catalysis, electrode materials and bioengineering. In this work, a multiphase iron nanocrystals consisting of Fe3C, Fe and FeN nanoparticles encapsulated in hierarchical structure of graphite carbon (denoted as Fe/Fe3C/FeN@GC) is synthesized for the first time by a novel high temperature plasma method. Meanwhile, more defects and functional groups are introduced by surface modification of graphite carbon layer of Fe/Fe3C/FeN@GC with controllable CO2 (low temperature) plasma. Benefiting from the advantages of multiple heterogenous interface and the abundant interfacial polarization relaxation that represent strong electromagnetic (EM) wave dissipation as well as an applicable impedance matching, the optimized Fe/Fe3C/FeN@GC demonstrate superior microwave absorption (MA) properties. The minimum reflection loss (RL) achieves −54.4 dB (more than 99.9% MA) at 17.6 GHz with a thin thickness of 1.8 mm, and the maximum effective absorption bandwidth (EAB, RL < −10 dB) is up to 6.2 GHz (11.8–18.0 GHz) at 2.0 mm. The above results reveal that the optimized Fe/Fe3C/FeN@GC composites with strong absorption, broad EAB, light mass (only filling content of 30 wt%) and ultrathin thickness are prospective candidate for high performance EM wave absorbers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化碳等离子体表面改性促进铁/Fe3C/FeN@石墨碳纳米粒子的核壳结构,实现高性能微波吸收器
三维(3D)材料的表面改性是调整其界面缺陷浓度、电子电导率和功能基团含量的有效方法,在催化、电极材料和生物工程领域有着广泛的应用。在这项研究中,首次采用新型高温等离子体方法合成了包裹在石墨碳分层结构中的由FeC、Fe和FeN纳米颗粒组成的多相铁纳米晶体(称为Fe/FeC/FeN@GC)。同时,通过可控 CO(低温)等离子体对 Fe/FeC/FeN@GC 石墨碳层进行表面改性,引入了更多的缺陷和官能团。得益于多重异质界面和丰富的界面极化弛豫(代表强大的电磁(EM)波耗散)以及适用的阻抗匹配等优势,优化后的 Fe/FeC/FeN@GC表现出了卓越的微波吸收(MA)特性。在厚度为 1.8 mm 的情况下,17.6 GHz 时的最小反射损耗 (RL) 达到 -54.4 dB(MA 值超过 99.9%);在厚度为 2.0 mm 的情况下,最大有效吸收带宽 (EAB, RL < -10 dB) 高达 6.2 GHz (11.8-18.0 GHz)。上述结果表明,经过优化的 Fe/FeC/FeN@GC 复合材料具有吸收能力强、有效吸收带宽宽、质量轻(填充物含量仅为 30 wt%)和厚度超薄等特点,有望成为高性能电磁波吸收体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
期刊最新文献
Enhanced microwave absorption properties of Ti3AlC2 particles modified by a facile preoxidation strategy Poly aryletherketone chemically modified multi-walled carbon nanotubes/poly etheretherketone electromagnetic interference shielding foam suitable for high temperature and strong corrosive media Metal-sown selective area growth of high crystalline quality InAsSb nanowires and networks by molecular-beam epitaxy Building robust copper nanostructures via carbon coating derived from polydopamine for oxygen reduction reaction PAM material that instantly gives ordinary fabrics excellent flame retardant and thermal insulation properties for fire rescue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1