Papaya seeds-derived CoNi/C magnetic biochar nanocomposites for strong microwave absorption and ultra-wide bandwidth

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Nano Pub Date : 2025-02-10 DOI:10.1016/j.mtnano.2025.100588
Yaoyi Li , Zexu Han , Beibei Zhan , Xiaosi Qi , Junfei Ding , Xiu Gong , Lei Wang , Wei Zhong
{"title":"Papaya seeds-derived CoNi/C magnetic biochar nanocomposites for strong microwave absorption and ultra-wide bandwidth","authors":"Yaoyi Li ,&nbsp;Zexu Han ,&nbsp;Beibei Zhan ,&nbsp;Xiaosi Qi ,&nbsp;Junfei Ding ,&nbsp;Xiu Gong ,&nbsp;Lei Wang ,&nbsp;Wei Zhong","doi":"10.1016/j.mtnano.2025.100588","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass-derived carbon materials preserve the distinctive physicochemical architecture of their biological precursors, offering the benefits of ready availability and eco-friendliness, which renders them favored candidates in the realm of microwave absorption. Herein, a continuous cryodesiccation, soaking and thermal treatment was employed to produce papaya seeds-derived CoNi/C magnetic biochar nanocomposites (MBNCs) consisting of CoNi nanoparticles and carbon layers. By increasing the concentration of Co and Ni sources, progressively large size and enhanced content of CoNi nanoparticles could be produced in the obtained CoNi/C MBNCs. Additionally, the increased degree of graphitization for CoNi/C MBNCs were also acquired by raising the calcination temperature from 700 to 900 °C. Owing to excellent magnetic-dielectric synergies, all the acquired CoNi/C MBNCs presented very extraordinary microwave absorption properties. Especially, the optimized CoNi/C MBNCs presented an effective absorption band of 7.40 GHz and a minimum reflection loss of −59.90 dB, corresponding to thin matching thicknesses of 1.84 mm and 1.76 mm, respectively. To sum up, a straightforward, economical and reproducible biomass-derived strategy was proposed to synthesize CoNi/C MBNCs, which could be acted as a desirable lightweight efficient microwave absorber.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"29 ","pages":"Article 100588"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000197","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomass-derived carbon materials preserve the distinctive physicochemical architecture of their biological precursors, offering the benefits of ready availability and eco-friendliness, which renders them favored candidates in the realm of microwave absorption. Herein, a continuous cryodesiccation, soaking and thermal treatment was employed to produce papaya seeds-derived CoNi/C magnetic biochar nanocomposites (MBNCs) consisting of CoNi nanoparticles and carbon layers. By increasing the concentration of Co and Ni sources, progressively large size and enhanced content of CoNi nanoparticles could be produced in the obtained CoNi/C MBNCs. Additionally, the increased degree of graphitization for CoNi/C MBNCs were also acquired by raising the calcination temperature from 700 to 900 °C. Owing to excellent magnetic-dielectric synergies, all the acquired CoNi/C MBNCs presented very extraordinary microwave absorption properties. Especially, the optimized CoNi/C MBNCs presented an effective absorption band of 7.40 GHz and a minimum reflection loss of −59.90 dB, corresponding to thin matching thicknesses of 1.84 mm and 1.76 mm, respectively. To sum up, a straightforward, economical and reproducible biomass-derived strategy was proposed to synthesize CoNi/C MBNCs, which could be acted as a desirable lightweight efficient microwave absorber.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
期刊最新文献
Engineering hierarchical multilevel microstructures of CoNC/rGO aerogel originated from interfacially ordered ZIF-L nanosheet arrays for superior electromagnetic wave dissipation Papaya seeds-derived CoNi/C magnetic biochar nanocomposites for strong microwave absorption and ultra-wide bandwidth Gradient-structured polyimide nonwoven fabrics for intelligent adjustable low-reflection electromagnetic interference shielding Anisotropy engineering of Prussian blue analogue derived FeNi nanoflakes for broadband electromagnetic wave absorption Electromagnetic wave absorbing properties of flexible thermal conductive ZnO@FeSiAl silicone rubber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1