Qiang Wen, Lele Chen, Jingwen Jin, Jianhao Huang, HeLin Wan
{"title":"Research on interference compensation methods for color image sensors based on iterative learning","authors":"Qiang Wen, Lele Chen, Jingwen Jin, Jianhao Huang, HeLin Wan","doi":"10.1108/sr-12-2023-0662","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Fixed mode noise and random mode noise always exist in the image sensor, which affects the imaging quality of the image sensor. The charge diffusion and color mixing between pixels in the photoelectric conversion process belong to fixed mode noise. This study aims to improve the image sensor imaging quality by processing the fixed mode noise.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Through an iterative training of an ergoable long- and short-term memory recurrent neural network model, the authors obtain a neural network model able to compensate for image noise crosstalk. To overcome the lack of differences in the same color pixels on each template of the image sensor under flat-field light, the data before and after compensation were used as a new data set to further train the neural network iteratively.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The comparison of the images compensated by the two sets of neural network models shows that the gray value distribution is more concentrated and uniform. The middle and high frequency components in the spatial spectrum are all increased, indicating that the compensated image edges change faster and are more detailed (Hinton and Salakhutdinov, 2006; LeCun <em>et al.</em>, 1998; Mohanty <em>et al.</em>, 2016; Zang <em>et al.</em>, 2023).</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>In this paper, the authors use the iterative learning color image pixel crosstalk compensation method to effectively alleviate the incomplete color mixing problem caused by the insufficient filter rate and the electric crosstalk problem caused by the lateral diffusion of the optical charge caused by the adjacent pixel potential trap.</p><!--/ Abstract__block -->","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":"35 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-12-2023-0662","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Fixed mode noise and random mode noise always exist in the image sensor, which affects the imaging quality of the image sensor. The charge diffusion and color mixing between pixels in the photoelectric conversion process belong to fixed mode noise. This study aims to improve the image sensor imaging quality by processing the fixed mode noise.
Design/methodology/approach
Through an iterative training of an ergoable long- and short-term memory recurrent neural network model, the authors obtain a neural network model able to compensate for image noise crosstalk. To overcome the lack of differences in the same color pixels on each template of the image sensor under flat-field light, the data before and after compensation were used as a new data set to further train the neural network iteratively.
Findings
The comparison of the images compensated by the two sets of neural network models shows that the gray value distribution is more concentrated and uniform. The middle and high frequency components in the spatial spectrum are all increased, indicating that the compensated image edges change faster and are more detailed (Hinton and Salakhutdinov, 2006; LeCun et al., 1998; Mohanty et al., 2016; Zang et al., 2023).
Originality/value
In this paper, the authors use the iterative learning color image pixel crosstalk compensation method to effectively alleviate the incomplete color mixing problem caused by the insufficient filter rate and the electric crosstalk problem caused by the lateral diffusion of the optical charge caused by the adjacent pixel potential trap.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.