{"title":"Arc Discharge Synthesis and Multistep Purification of Multiwall Carbon Nanotubes","authors":"Madni Shifa, Zaigham Saeed Toor, Fawad Tariq","doi":"10.1142/s1793292024500073","DOIUrl":null,"url":null,"abstract":"<p>This research work describes the cost-effective synthesis and purification of multiwall carbon nanotubes (MWCNTs). Synthesis of CNTs was carried out in distilled water between two electrodes using the electric arc discharge (EAD) method. EAD is a simple and straightforward route in which an electric arc is generated between graphite electrodes through DC power source to produce soot which contains MWCNTs along with impurities. The deposited soot containing MWCNTs was then chipped off and purified. In this case, multistep purification scheme was opted to remove unwanted impurities from produced MWCNTs. Purification route comprised thermal treatment, chemical treatment and a combination of both to yield pure MWCNTs. Thermal treatments were carried out in normal air and under controlled flow of oxygen at different temperatures whereas chemical treatment was performed using acidic solution. Thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were carried out before and after purification treatments to investigate the outcome of employed treatments. Results showed that the thermal or chemical treatment alone is not sufficient to remove impurities from soot. Moreover, the introduction of an oxide group through chemical treatment reduces the oxidization temperature of graphitic particles. It was found that the chemical treatment followed by thermal annealing under the controlled flow of oxygen is the most appropriate method for successful purification of MWCNTs synthesized via EAD method.</p>","PeriodicalId":18978,"journal":{"name":"Nano","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1142/s1793292024500073","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This research work describes the cost-effective synthesis and purification of multiwall carbon nanotubes (MWCNTs). Synthesis of CNTs was carried out in distilled water between two electrodes using the electric arc discharge (EAD) method. EAD is a simple and straightforward route in which an electric arc is generated between graphite electrodes through DC power source to produce soot which contains MWCNTs along with impurities. The deposited soot containing MWCNTs was then chipped off and purified. In this case, multistep purification scheme was opted to remove unwanted impurities from produced MWCNTs. Purification route comprised thermal treatment, chemical treatment and a combination of both to yield pure MWCNTs. Thermal treatments were carried out in normal air and under controlled flow of oxygen at different temperatures whereas chemical treatment was performed using acidic solution. Thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were carried out before and after purification treatments to investigate the outcome of employed treatments. Results showed that the thermal or chemical treatment alone is not sufficient to remove impurities from soot. Moreover, the introduction of an oxide group through chemical treatment reduces the oxidization temperature of graphitic particles. It was found that the chemical treatment followed by thermal annealing under the controlled flow of oxygen is the most appropriate method for successful purification of MWCNTs synthesized via EAD method.
期刊介绍:
NANO is an international peer-reviewed monthly journal for nanoscience and nanotechnology that presents forefront fundamental research and new emerging topics. It features timely scientific reports of new results and technical breakthroughs and also contains interesting review articles about recent hot issues.
NANO provides an ideal forum for presenting original reports of theoretical and experimental nanoscience and nanotechnology research. Research areas of interest include: nanomaterials including nano-related biomaterials, new phenomena and newly developed characterization tools, fabrication methods including by self-assembly, device applications, and numerical simulation, modeling, and theory. However, in light of the current stage development of nanoscience, manuscripts on numerical simulation, modeling, and/or theory only without experimental evidences are considered as not pertinent to the scope of NANO.