Unlocking the Potential of Trans-Himalayan High-Altitude Seabuckthorn (Hippophae rhamnoides) Plants in the Green Synthesis of Silver Nanoparticles Against Drug-Resistant Foodborne Pathogens: A Step Towards Sustainable Food Safety Goals
{"title":"Unlocking the Potential of Trans-Himalayan High-Altitude Seabuckthorn (Hippophae rhamnoides) Plants in the Green Synthesis of Silver Nanoparticles Against Drug-Resistant Foodborne Pathogens: A Step Towards Sustainable Food Safety Goals","authors":"Richa Arora, Vijay Kumar Bharti, Shubhankhi Dey","doi":"10.1142/s1793292024500243","DOIUrl":null,"url":null,"abstract":"<p>Controlling foodborne pathogens is challenging due to the new emergence of antimicrobial resistance to conventional antimicrobials. Therefore, new alternative antimicrobials need to be developed to control foodborne pathogens and avoid microbial resistance. Furthermore, the potential of trans-Himalayan high-altitude seabuckthorn (<i>Hippophae rhamnoides </i>) plants has not been explored much for the synthesis of silver nanoparticles having antibacterial properties. Hence, this study investigated the development of long-term stable silver nanomaterials using the aqueous extract of seabuckthorn leaves through a green-synthesis approach and evaluated their antibacterial efficacy. These synthesized nanomaterials were characterized along with their stability using UV spectrometry for lambda max (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>λ</mi><mo>max</mo></math></span><span></span>) characteristics. Further, the nanoparticles were evaluated for zeta potential (mV), polydispersity index, particle size distribution (nm), electrophoretic mobility (<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>μ</mi></math></span><span></span>mcm/Vs) and conductivity (mS/cm). The seabuckthorn silver nanoparticles are of 260<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>nm size and stable (−15<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>mV zeta potential) with good antioxidant and antibacterial properties against two typical food pathogens, e.g., <i>Escherichia coli</i> (MTCC 3222) and <i>Salmonella typhimurium</i> (MTCC 3224). Hence, this study developed an eco-friendly, rapid, low-cost green synthesis method for the development of seabuckthorn-coated, stable silver nanoparticles with good antibacterial activity against foodborne pathogens.</p>","PeriodicalId":18978,"journal":{"name":"Nano","volume":"58 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1142/s1793292024500243","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling foodborne pathogens is challenging due to the new emergence of antimicrobial resistance to conventional antimicrobials. Therefore, new alternative antimicrobials need to be developed to control foodborne pathogens and avoid microbial resistance. Furthermore, the potential of trans-Himalayan high-altitude seabuckthorn (Hippophae rhamnoides ) plants has not been explored much for the synthesis of silver nanoparticles having antibacterial properties. Hence, this study investigated the development of long-term stable silver nanomaterials using the aqueous extract of seabuckthorn leaves through a green-synthesis approach and evaluated their antibacterial efficacy. These synthesized nanomaterials were characterized along with their stability using UV spectrometry for lambda max () characteristics. Further, the nanoparticles were evaluated for zeta potential (mV), polydispersity index, particle size distribution (nm), electrophoretic mobility (mcm/Vs) and conductivity (mS/cm). The seabuckthorn silver nanoparticles are of 260nm size and stable (−15mV zeta potential) with good antioxidant and antibacterial properties against two typical food pathogens, e.g., Escherichia coli (MTCC 3222) and Salmonella typhimurium (MTCC 3224). Hence, this study developed an eco-friendly, rapid, low-cost green synthesis method for the development of seabuckthorn-coated, stable silver nanoparticles with good antibacterial activity against foodborne pathogens.
期刊介绍:
NANO is an international peer-reviewed monthly journal for nanoscience and nanotechnology that presents forefront fundamental research and new emerging topics. It features timely scientific reports of new results and technical breakthroughs and also contains interesting review articles about recent hot issues.
NANO provides an ideal forum for presenting original reports of theoretical and experimental nanoscience and nanotechnology research. Research areas of interest include: nanomaterials including nano-related biomaterials, new phenomena and newly developed characterization tools, fabrication methods including by self-assembly, device applications, and numerical simulation, modeling, and theory. However, in light of the current stage development of nanoscience, manuscripts on numerical simulation, modeling, and/or theory only without experimental evidences are considered as not pertinent to the scope of NANO.