Urban Life Affects Differentiation and Phenotypic Variation but not Asymmetry in a Fully Terrestrial Salamander

IF 1.9 2区 生物学 Q3 EVOLUTIONARY BIOLOGY Evolutionary Biology Pub Date : 2024-04-19 DOI:10.1007/s11692-024-09635-6
Lucía Alarcón-Ríos, Antigoni Kaliontzopoulou, David Álvarez, Guillermo Velo-Antón
{"title":"Urban Life Affects Differentiation and Phenotypic Variation but not Asymmetry in a Fully Terrestrial Salamander","authors":"Lucía Alarcón-Ríos, Antigoni Kaliontzopoulou, David Álvarez, Guillermo Velo-Antón","doi":"10.1007/s11692-024-09635-6","DOIUrl":null,"url":null,"abstract":"<p>The environmental transformations associated with cities are expected to affect organisms at the demographic, phenotypic, and evolutionary level, often negatively. The prompt detection of stressed populations before their viability is compromised is essential to understand species’ responses to novel conditions and to integrate urbanization with biodiversity preservation. The presumably stressful conditions of urban environments are expected to affect organisms’ developmental pathways, resulting in a reduction of the efficacy of developmental stability and canalization processes, which can be observed as increased Fluctuating Asymmetry (FA) and Phenotypic Variance (PV), respectively. Here, we investigated whether patterns of phenotypic variation of urban populations of a fully terrestrial salamander, <i>Salamandra salamandra bernardezi</i>, are affected by urban settings compared to surrounding native forest populations. We sampled populations within and around the city of Oviedo (northern Spain) and used geometric morphometrics to compare morphological differentiation, head shape deviance from the allometric slope, PV, and FA. We also compared morphological patterns with neutral genetic and structure patterns. We observed increased levels of differentiation among urban populations and in PV within certain of them, yet no differences in allometric deviance and FA were detected between habitats, and no morphological measures were found to be correlated with genetic traits. Our results do not support a clear negative impact of urban conditions over salamander populations, but rather suggest that other ecological and evolutionary local processes influence morphological variation in this urban system.</p>","PeriodicalId":50471,"journal":{"name":"Evolutionary Biology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11692-024-09635-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The environmental transformations associated with cities are expected to affect organisms at the demographic, phenotypic, and evolutionary level, often negatively. The prompt detection of stressed populations before their viability is compromised is essential to understand species’ responses to novel conditions and to integrate urbanization with biodiversity preservation. The presumably stressful conditions of urban environments are expected to affect organisms’ developmental pathways, resulting in a reduction of the efficacy of developmental stability and canalization processes, which can be observed as increased Fluctuating Asymmetry (FA) and Phenotypic Variance (PV), respectively. Here, we investigated whether patterns of phenotypic variation of urban populations of a fully terrestrial salamander, Salamandra salamandra bernardezi, are affected by urban settings compared to surrounding native forest populations. We sampled populations within and around the city of Oviedo (northern Spain) and used geometric morphometrics to compare morphological differentiation, head shape deviance from the allometric slope, PV, and FA. We also compared morphological patterns with neutral genetic and structure patterns. We observed increased levels of differentiation among urban populations and in PV within certain of them, yet no differences in allometric deviance and FA were detected between habitats, and no morphological measures were found to be correlated with genetic traits. Our results do not support a clear negative impact of urban conditions over salamander populations, but rather suggest that other ecological and evolutionary local processes influence morphological variation in this urban system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市生活会影响完全陆生的蝾螈的分化和表型变异,但不会影响其不对称性
与城市相关的环境变化预计会在人口、表型和进化水平上对生物产生影响,而且往往是负面影响。要了解物种对新环境的反应,并将城市化与生物多样性保护结合起来,就必须在种群的生存能力受到损害之前及时发现受压种群。城市环境中可能存在的压力条件会影响生物的发育途径,导致发育稳定性和渠化过程的效率降低,这可分别表现为波动不对称(FA)和表型变异(PV)的增加。在此,我们研究了与周围的原生森林种群相比,完全陆生的蝾螈(Salamandra salamandra bernardezi)城市种群的表型变异模式是否会受到城市环境的影响。我们对奥维耶多市(西班牙北部)及其周边的种群进行了采样,并使用几何形态计量学比较了形态分化、头形偏离异速斜率、PV 和 FA。我们还将形态模式与中性遗传和结构模式进行了比较。我们观察到城市种群之间的分化水平以及某些城市种群内部的PV水平都有所提高,但在不同生境之间没有发现异速斜率偏差和FA的差异,也没有发现形态测量与遗传特征相关。我们的研究结果并不支持城市条件对大鲵种群的明显负面影响,而是表明其他生态和进化的局部过程影响着这个城市系统中的形态变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Biology
Evolutionary Biology 生物-进化生物学
CiteScore
3.80
自引率
4.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: The aim, scope, and format of Evolutionary Biology will be based on the following principles: Evolutionary Biology will publish original articles and reviews that address issues and subjects of core concern in evolutionary biology. All papers must make original contributions to our understanding of the evolutionary process. The journal will remain true to the original intent of the original series to provide a place for broad syntheses in evolutionary biology. Articles will contribute to this goal by defining the direction of current and future research and by building conceptual links between disciplines. In articles presenting an empirical analysis, the results of these analyses must be integrated within a broader evolutionary framework. Authors are encouraged to submit papers presenting novel conceptual frameworks or major challenges to accepted ideas. While brevity is encouraged, there is no formal restriction on length for major articles. The journal aims to keep the time between original submission and appearance online to within four months and will encourage authors to revise rapidly once a paper has been submitted and deemed acceptable.
期刊最新文献
Diving into Diversity: The Complex Evolutionary History and Species Richness of the ‘sawfin barbs’ from Lake Edward and Adjacent Systems A Specialized Combination: The Relationship between Reproductive Structure Arrangement and Breeding Systems in oil-rewarding Calceolaria Species (Calceolariaceae) Restructuring of Skull Modularity Pattern in Evolution Within Myotis myotis–Myotis blythii Species Group (Vespertilionidae, Chiroptera, Mammalia) Correction: Effects of Procrustes Superimposition and Semilandmark Sliding on Modularity and Integration: An Investigation Using Simulations of Biological Data A Graph-Based Mathematical Model for More Efficient Dimensionality Reduction of Landmark Data in Geometric Morphometrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1